

PVG 120 Proportional Valves

Technical Information

PVG 120 Proportional Valve **SAUER PVG** 120 Proportional Technical Information **Revision History, Contents**

Table of Revisions

Date	Page	Changed	Rev
Apr 2010	Various	Layout, drawings and others	HA
Sep 2010	29,44	Drawing, new back cover	HB
Sep 2011	All	TOC moved all pages by one, Safety section, SD layout.	IA
May 2012	22-23	Tables PVHC, PVE.	IB
Jul 2012	42	PVM table data	IC

Contents

General Information	Valve system	4
	General characteristics	4
	Pump side module – PVP	4
	Basic module – PVB	
	Actuation modules	
	Remote controls units	
	Electronic accessories	5
Function	PVG 120 with Open Centre PVP	6
	PVG 120 with Closed Centre PVP	
	PVG 120 Sectional Drawing	
Hydraulic Systems	Examples	8
Technical Data	PVG 120 Valve Group	10
	Mechanical Actuation PVM	
	Hydraulic Actuation PVH	.10
	PVE, Electrical Actuation	11
	PVEO	11
	PVEH	11
	PVPE, Electrical Relief Valve, Normally Open	.12
Electrical Actuation	PVEO, ON-OFF	13
	PVEH, Proportional High	13
	PVEH, LVDT-Transducer	
	PVEH, Pulse Width Modulation	
	PVEH, Fault Monitoring	
	Fault Monitoring Specification	
	PVEH, Connection to Fault Monitoring Output	

© 2012 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss, the Sauer-Danfoss logotype, the Sauer-Danfoss S-icon, PLUS+1™, What really matters is inside® and Know-How in Motion™ are trademarks of the Sauer-Danfoss Group.

SAUER
DANFOSSPVG 120 Proportional Valve
Technical Information Contents

Modules and Code	PVP and PVPV, Pump Side Modules	17
Numbers	PVP, Accessories for Open Centre Pump Side Modules	
	PVB, Basic Modules	
	PVB, Accessories for Basic Modules	
	PVLP, Shock and Suction Valves for A and B Port Connections	21
	PVLA, Suction Valve	21
	PVBS, Main Spools	22
	PVM, Mechanical Actuation	22
	PVMD, Cover for Mechanical Actuation	22
	PVH, Hydraulic Actuation	23
	PVH, High Current Actuator	
	PVE, Electrical Actuation	
	PVT, Tank Side Modul	24
	PVAS, Assembly Kit	
	Modules for Oil Flow Exceeding 180 l/min [47.6 US gal/min]	
	Pump with fixed displacement	
	Pump with variable displacement	25
Technical Characteristics	General	26
	PVP, Pump Side Module	26
	PVB, Basic Module	
	PVLP, Shock Valve (Pressure Relief Valve in PVLP)	29
	PVLP/PVLA, Suction Function	29
Dimensions	Valve Dimensions	30
	General Dimensions	31
Lever Positions	PVM, Lever Positions	32
Safety in Application	Building in Safety	
	FMEA (Failure Mode and Effect Analysis) IEC EN 61508	
	Hazard and Risk Analysis ISO 12100-1 / 14121	
	Control System Example	
	PVG32 – Mainly used in system with fixed displacement pumps	
	PVG100 – Alternative LS dump or pilot supply disconnect	
	PVG120 – Pump disconnect/block for variable pumps	36
Other Operating	Oil, Particle Content, Degree of Contamination	
Conditions	Mineral oil, Non-flammable fluids, Biodegradable oils	
	Filtering	
	Conversion Factors	
Order Specification	Order Form	40
-	Reordering	41
Module Selection Chart	Module Selection Chart	42

PVG 120 Proportional Valve Technical Information General Information

General

Valve system

Load sensing proportional valve type PVG 120 is a combined directional and flow control valve which is supplied as a valve group consisting of modules specified to match particular customer needs. The flexible nature of this valve will allow an existing valve bank to be easily adapted to suit changes in requirements.

General characteristics

F300 011

- Load-independent flow control:
 - Oil flow to an individual function is independent of the load of this function
 - Oil flow to one function is independent of the load pressure of other functions
- Good regulation characteristics
- Central pilot supply built in when the valves are actuated electrohydraulically
- Energy-saving
- Up to eight basic modules per valve group

Pump side module – PVP

- Built-in pressure relief valve
- System pressure up to 400 bar [5800 psi]
- Pressure gauge connection
- Versions:
 - Open centre version for systems with fixed displacement pumps
 - Open centre version prepared for an extra relief module
 - Closed centre version for systems with variable displacement pumps
 - Closed centre version without system pressure relief valve for variable displace ment pumps with built-in pressure relief valve.

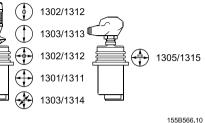
Basic module – PVB

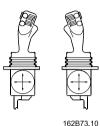
- Integrated pressure compensator in channel P
- Interchangeable spools
- Depending on requirements the basic module can be supplied with:
 - Shock/suction valves
 - Adjustable LS pressure limiting valve for ports A and B
 - LS connection
 - Module for oil flows exceeding 180 l/min [47.6 gpm]
 - Different spool variants

Actuation modules

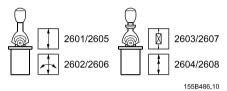
The basic module is always fitted with mechanical actuation PVM, which can be combined with the following as required:

- Electrical actuation
 - PVEH- proportional, high performance (11 32 V==)
 - PVEO On/off (12 V == or 24 V ==)
- Cover for hydraulic remote control, PVH
- Cover for mechanically actuated valve group, PVMD

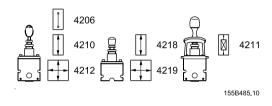


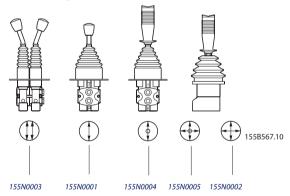

PVG 120 Proportional Valve **Technical Information General Information**

General


Remote controls units

- PVRE, electrical control unit, 162F...
 - 1302/1312 •) 1303/1313 🕻 1302/1312 1305/1315 (\Rightarrow) \bigoplus 1301/1311 (\mathbf{r}) 1303/1314
- Prof 1, 162F...




PVREL, electrical control unit, 155U... •

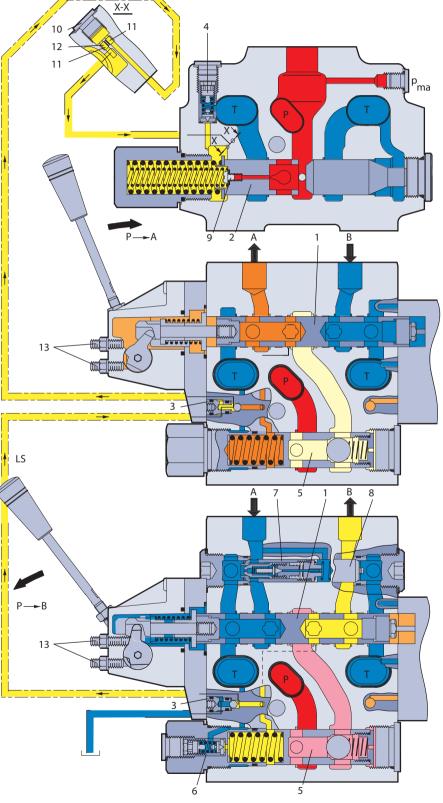
• PVRES, electrical control unit, 155B...

• PVRH, hydraulic control unit, 155N...

Electronic accessories

- EHF, low adjustment unit
- EHR, ramp generator
- EHS, speed control
- EHSC, closed loop speed control
- EHA, alarm logic
- EHC, closed loop position control

SAUER
DANFOSSPVG 120 Proportional Valve
Technical Information Function


PVG 120 with Open Centre PVP	When the pump is started and the main spools (1) in the individual basic modules are in neutral position, oil flows from the pump, through connection P, across the pressure adjustment spool (2) to tank. The oil flow led across the pressure adjustment spool determines the pump pressure (stand-by pressure). If a reduced stand-by pressure is required, an extra relief valve PVPH or PVPE can be used in PVP (<i>see characteristics for neutral flow pressure, page 25</i>).
	When the main spools are actuated the highest load pressure is distributed across the shuttle valve circuit (3) to the spring chamber behind the pressure adjustment spool (2) and completely or partly closes the connection to tank.
	The pump pressure is applied to the right-hand side of the pressure adjustment spool (2). The pressure relief valve (4) opens when the load pressure exceeds the set value, allowing pump flow to be diverted back to tank.
	In the basic module the compensator (5) maintains a constant pressure drop across the main spool – both when the load changes and when a module with a higher load pressure is activated.
	Shock and suction valves with a fixed setting (7) and the suction valves (8) on ports A and B are used to protect individual working functions against overload.
	 In the basic module it is possible to build in an adjustable LS pressure relief valve (6) to limit the pressure from each working function. The LS pressure limiting valve saves energy: Without LS pressure limiting valve all the oil flow to the working function will be led across the combined shock and suction valves to tank if the pressure exceeds the fixed setting of the valves. With LS pressure limiting valve an oil flow of only about 2 l/min [0.5 US gal/min] will be led across the LS pressure limiting valve to tank if the pressure exceeds the valve setting.
PVG 120 with Closed Centre PVP	In the closed centre version an orifice (9) has been fitted instead of the plug. This means that the pressure adjustment spool (2) will only open to tank when the pressure in channel P exceeds the pressure relief valve setting (4).
	In load sensing systems the load pressure is led to the pump regulator via the LS connec- tion (10). So the orifices (11) have been removed, and a plug (12) has been fitted instead of one of the orifices.
	In neutral position the pump regulator will set the displacement so that leakage in the system is just compensated for.
	When a main spool is activated, the pump regulator will adjust the displacement so that the set differential pressure between P and LS is maintained.
	The pressure relief valve (4) in PVP is set for a pressure of about 30 bar [435 psi] above maximum system pressure (set at the pump or an external pressure relief valve). If the system or the pump regulation has a pressure relief valve, it is possible to use a PVPV pump side module, without integrated pressure adjustment spool and pressure relief valve.

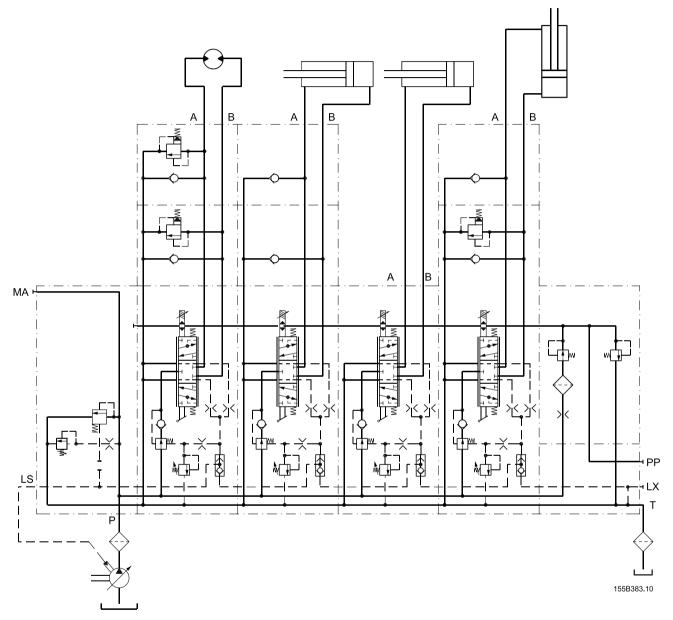
PVG 120 Proportional Valve Technical Information Function

PVG 120 Sectional Drawing

- 1. Main spool
- 2. Pressure adjustment spool in PVP
- 3. Shuttle valve
- 4. Pressure relief valve in PVP
- 5. Pressure compensator in PVB
- 6. LS pressure relief valve in PVB
- 7. Shock and suction valve PVLP
- 8. Suction valve PVLA
- 9. Orifice, closed centre PVP Plug, open centre PVP
- 10. LS connection
- 11. Orifice, open centre PVP
- 12. Plug, closed centre PVP

V310100.A

PVG 120 Proportional Valve Technical Information Hydraulic Systems


PVG 120 with fixed displacement pump Examples А в В В А A в MA Г 1 Ч Lr цŧм ЦРР 6 \$ \$ ٢ LS . H LX Т P 155B382.10

PVG 120 Proportional Valve Technical Information Hydraulic Systems

Examples

PVG 120 with variable displacement pump

SAUER PVG 120 Proportional Valve Technical Information **Technical Data**

PVG 120 Valve Group

				1
	Port P	continuous	350 bar	[5075 psi]
Max processo		intermittent ¹⁾	400 bar	[5800 psi]
Max. pressure	Port A/B		400 bar	[5800 psi]
	Port T, stati	c/dynamic	25 bar/40 bar	[365/580 psi]
Oil flow, (see	Port P, rate	d max.	240/300 l/min	[63.4/79.3 gpm]
	Port A/B		65/95/130/180/	[17.2/25.1/34.3/47.6/
characteristics page 27)	PORT A/D		210/240 l/min ²⁾	55.5/63.4 gpm ²⁾]
Spool travel			± 8 mm	[± 0.32 in]
Dead band (± 25%)			± 2 mm	[± 0.08 in]
Max. internal leakage	A/B→T, wit	hout shockvalve	90 cm ³ /min	[5.5 in ³ /min]
at 100 bar, 21 mm ² /s	A/B \rightarrow T, wit	th shockvalve	95 cm³/min	[5.6 in ³ /min]
Oil tomporature (inlat	Recommen	ded temperature	30 to 60°C	[86 to 140°F]
Oil temperature (inlet temperature)	Min. tempe	erature	-30°C	[-22°F]
temperature)	Max.tempe	erature	+90°C	[+194°F]
Ambient temperature			-30 to +60°C	[-22 to +140°F]
	Operating	range	12 to 75 mm ² /s	[65 SUS to 347 SUS]
Oil viscosity	Min. viscos	ity	4 mm ² /s	[39 SUS]
	Max. viscos	sity	460 mm ² /s	[2128 SUS]
Filtering (See page 39)	Max. conta 4406)	mination (ISO	23/1	9/16
Oil consumption in pre at PVE pilot-oil supply		tion valve for PVT	0.4 l/min [0.1 gpm]	
4 1 1 1 1 1 1 1 1 1 1 1 1			100/ 6	

Intermittent operation: the permissible values may occur for max. 10% of every minute.
 See page 25 regarding the ordering or conversion of valve groups for oil flows exceeding 180 l/min [47.6 gpm].

Mechanical Actuation PVM

		Neutral position	Max. spool travel
	PVM + PVMD	2.8 ± 0.2 N•m	4.0 ± 0.2 N•m
		[24.8 ± 1.8 lbf•in]	[35.5 ± 1.8 lbf•in]
Operating force	PVM + PVE	2.8 ± 0.2 N•m	4.0 ± 0.2 N•m
Operating force	(without voltage)	[24.8 ± 1.8 lbf•in]	[35.5 ± 1.8 lbf•in]
	PVM + PVH	4.7 ± 0.2 N•m	12.8 ± 0.2 N•m
		[41.6 ± 1.8 lbf•in]	[113.3 ± 1.8 lbf•in]
Possible control lever positions	Number	2 × 5	
Regulation range, control lever		±19,5°	

Hydraulic Actuation PVH

Control range	5 to 15 bar	[75 to 220 psi]
Max. pilot pressure, static	35 bar	[510 psi]
Max. pressure on port T *	3 bar	[45 psi]

* It is recommended that the tank connection from the hydraulic remote control unit PVRH is taken direct to tank.

PVG 120 Proportional Valve Technical Information Technical Data

PVE, Electrical Actuation

Actuation			PVEO ON/OFF	PVEH Proportional High
Hysteresis (applies to the electrical actuation online)		Typical	-	4%
Reaction time from neutral T		Typical	250 ms	250 ms
position to max. spool travel M		Max.	350 ms	280 ms
Reaction time from ma	x. spool	Typical	240 ms	150 ms
travel to neutral position ²⁾		Max.	330 ms	200 ms
Neutral position without 0 Pilot oil flow pr. PVE voltage 0		0 l/min / [l	JS/gal min]	
	Locked w	ith voltage ³⁾	0 l/min / [US/gal min]	
Enclosure to IEC 529		IP65		

The hysteresis is stated at rated and f = 0,02 Hz for a cycle. One cycle includes the movement from neu-tral
position to max. spool travel direction A, via neutral position to max. spool travel in direction B, and
back to neutral position. Further information can be obtained by contacting the Sales Organization for
Sauer-Danfoss.

2) Reaction times for PVEH is reduced by 20 by 30 ms if the voltage is not interrupted during the neutral positioning (remote control lever without neutral position switch).

3) Total oil consumtion for a spool movement from N to full A or B: 0.0035 I [0.0009 US gal]

PVEO

		PVEO	
	rated	12 V DC	24 V DC
Supply voltage UDC	range	11 V to 15 V	22 V to 30 V
	max. ripple	5	%
Current consumption at rated voltage		0.65 A @ 12 V	0.33 A @ 24 V
Simply alter (D)/EM)	neutral	0.5 x UDC	
Signal voltage (PVEM)	A-port ↔ B-port	0.25 • UDC to 0.75 • UDC	
Signal current at rated voltage (PVEM)		0.25 mA	0.50 mA
Input impedance in relation to 0.5 • UDC		12 ΚΩ	
Power consumption		8 W	

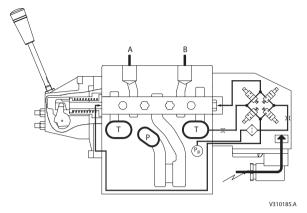
PVEH

		PV	EH
	rated	11 V to 32 V	
Supply voltage UDC	range	11 V to 32 V	
	max. ripple	5%	
Current consumption	n at rated voltage	0.57 (0.33) A @ 12 V	0.3 (0.17) A @ 24 V
Circultural neutral		0.5 x	UDC
Signal voltage	A-port ↔ B-port	0.25 • UDC to 0.75 • UDC	
Signal current at rated voltage		0.25 mA to 0.70 mA	
Input impedance in relation to 0.5 • UDC		12 ΚΩ	
Input capacitor 100 F		0 F	
Power consumption		7 (3.5) W	
	Max. load	100 mA	60 mA
PVEH Active	Reaction time at fault	500 ms	
Passive	Reaction time at fault	250 ms	

SAUER PVG 120 Proportional Technical Information PVG 120 Proportional Valve Technical Data

PVPE, Electrical Relief Valve, Normally Open

Max. operation pressure		350 bar [5085 psi]	
Max. pressure drop a an flow of 0.20 l/min. [0.053 US gal/ min]		1.2 bar [17 psi]	
Oil tomporature (inlat	Recommended temperature 30 to 60°C [86 to 140°F]		40°F]
Oil temperature (inlet temperature)	Min. temperature	–30°C [–22°F]	
temperature)	Max. temperature	+90°C [+194°F]	
Max. coil surface temperat	ure	155°C [311°F]	
Ambient temperature		-30 to +60°C [-22 t	to +140°F]
	Operating range	12 to 75 mm ² /s [65 to 347 SUS]	
Oil viscosity	Min. viscosity	4 mm ² /s [39 SUS]	
	Max. viscosity	460 mm ² /s [2128 SUS]	
Response time for pressure relief to tank		600 ms	
Enclosure to. IEC 529		IP 65	
Rated voltage		12 V	24 V
Max.permissible deviation from rated supply voltage		± 10 %	± 10 %
Current consumption at	at 22°C [72°F] coil temperature	1.55 A	0.78 A
rated voltage	at 85°C [230°F] coil temperature	1.00 A	0.50 A
Power concumption	at 22°C [72°F] coil temperature	19 W	19 W
Power consumption	at 85°C [230°F] coil temperature	12 W	12 W



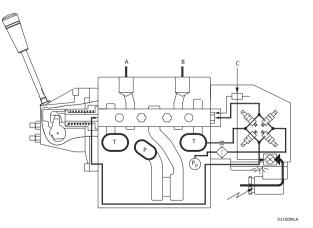
PVG 120 Proportional Valve Technical Information Electrical Actuation

PVEO, ON-OFF

Main features of PVEO:

- Compact
- Robust operation
- With Hirschmann or AMP
- connector
- Low electrical power

PVEH, Proportional High


PVEH adjusts the main spool position so that it corresponds to an electrical control signal – for example from a remote control unit.

The control signal (set-point signal) is converted into a hydraulic pressure which moves the main spool. The position of the main spool is converted in the positional transducer (C) to an electric signal (feed-back signal). This signal is registered by the electronics.

The variation between the set-point signal and feed-back signal actuates the solenoid valves. Thus the hydraulic pressure moves the main spool into the correct position.

Special features of PVEH:

- Inductive transducer
- Integrated pulse width modulation
- Low hysteresis
- Fast reaction time
- Hirschmann or AMP connector
- Fault monitoring with transistor output for signal source
- Low electrical power
- No set-up procedure

SAUER PVG 120 Proportional **DANFOSS** Technical Information PVG 120 Proportional Valve **Electrical Actuation**

PVEH, LVDT-Transducer	LVDT, Inductive transducer (Linear Variable Differential Transformer) When the main spool is moved a voltage is induced proportional to the spool position. The use of LVDT gives contact-free (proximity) registration of the main spool position. This means an extra-long working life and no limitation as regards the type of hydraulic fluid used. In addition, LVDT gives a precise position signal of high resolution.
PVEH, Pulse Width Modulation	Integrated pulse width modulation Positioning of the main spool in PVEH is based on the pulse width modulation principle. As soon as the main spool reaches the required position, modulation stops and the spool is locked in position.
PVEH, Fault Monitoring	 A fault monitoring system is provided in all PVEA, PVEH and PVES modules. The system is available in two versions: The active fault monitoring type, which provides a warning signal, deactivates the solenoid valves and drives the spool in neutral. The passive fault monitoring type, which provides a warning signal only. Both active and passive fault monitoring systems are triggered by three main events: <i>1. Input signal monitoring</i>

The input signal voltage is continuously monitored. The permissible range is between 15% and 85% of the supply voltage. Outside this range the section will switch into an active error state.

2. Transducer supervision

If one of the wires to the LVDT sensor is broken or short-circuited, the section will switch into an active error state.

3. Supervision of the closed loop

The actual position must always correspond to the demanded position (input signal). If the actual spool position is further than the demanded spool position (>12%, PVEA: >25%), the system detects an error and will switch into an active error state. On the other hand, a situation where the actual position is closer to neutral than that demanded will not cause an error state. This situation is considered "in control".

When an active error state occurs, the fault monitoring logic will be triggered:

Active fault monitoring

- A delay of 500 ms (PVEA: 750 ms) before anything happens.
- The solenoid valve bridge will be disabled and all solenoid valves will be released.
- An alarm signal is sent out through the appropriate pin connection. •
- This state is memorized and continues until the system is actively reset (by turning off the supply voltage).

Passive fault monitoring

- A delay of 250 ms (PVEA: 750 ms) before anything happens.
- The solenoid valve bridge will not be disabled but still control the main spool position.
- An alarm signal is sent out through the appropriate pin connection. •
- This state is not memorized. When the erroneous state disappears, the alarm signal will turn to passive again. However, the signal will always be active for a minimum of 100 ms when triggered.

PVG 120 Proportional Valve Technical Information Electrical Actuation

PVEH, Fault Monitoring (continued)

To prevent the electronics from going into an undefined state, a general supervision of the power supply and the internal clock frequency is made. This function applies to PVEH - and will not activate fault monitoring:

1. High supply voltage

The solenoid valves are disabled when the supply voltage exceeds 36 V, and the main spool will return/stay in neutral.

2. Low supply voltage

The solenoid valves are disabled when the supply voltage falls below 8.5 V, and the main spool will return/stay in neutral.

3. Internal clock

The solenoid valves are disabled when the internal clock frequency fails, and the main spool will return/stay in neutral.

A Warning

It's up to the customer to decide on the required degree of safety for the system.

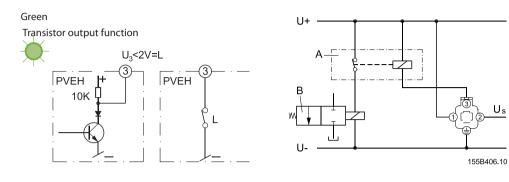
Different degrees of safety are described on pages 34 to 37.

The fault monitoring does not work if the supply voltage to PVEH is cut off - for example by a neutral position switch.

When using PVEH with passive fault monitoring it is up to the customer to decide on the degree of safety required for the system (*see page 34*).

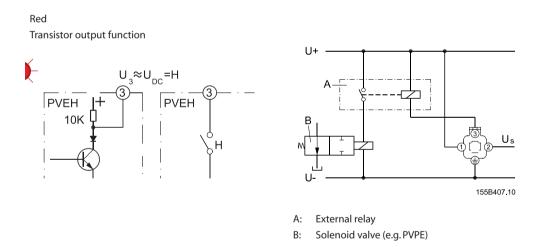
Туре	Fault	Delay before error out	Error mode	Error output status	Fault output on PVE ¹⁾	LED light	Memory (reset needed)	
PVEO	No fault monitoring	-	-	-	-	-	-	
			No fault	Low	< 2 V	Green	-	
	Active	500	Input signal faults	High			Flashing red	
	Active	500 ms	Transducer (LVDT)		~U _{DC}	Constant red	Yes	
PVEH	0. (51)		Close loop fault			Constant red		
PVEH			No fault	Low	< 2 V	Green	-	
	Passive	250 ms	Input signal faults			Flashing red		
	Passive	250 ms	Transducer (LVDT)	High	~U _{DC}		No	
			Close loop fault			Constant red		

¹⁾ Measured between fault output pin and ground.


Fault Monitoring Specification

PVG 120 Proportional Valve Technical Information Electrical Actuation

PVEH, Connection to Fault Monitoring Output


Normal

A: External relay

B: Solenoid valve (e.g. PVPE)

Fault

Via an external relay pin 3 can be connected to an electrically actuated valve which will relieve pump oil flow to tank, e.g. PVPE.

Other connections possible:

- a valve to relieve the LS signal
- a signal lamp, an alarm horn
- pump cut-out, etc.

SAUER
DANFOSSPVG 120 Proportional Valve
Technical Information Modules and Code Numbers

PVP and PVPV, Pump Side Modules

Symbol	Description		Code number
MA T	Open centre PVP for pumps with fixed	Metric flange	155G5021
	displacement.	SAE flange	155G5037
	Pressure gauge connection.	O-ring boss	155G5023
	Open centre PVP for oil flow exceeding	Metric flange	155G5027
	180 l/min. [47.55 US gallon/min]. For pumps with fixed displacement.	SAE flange	155G5029
155B368.		O-ring boss	155G5028
		Metric flange	155G5020
	Closed centre PVP for pumps with variable displacement. Pressure gauge connection.	SAE flange	155G5038
155B371.		O-ring boss	155G5022
LSMA		Metric flange	155G5030
P	Closed centre PVPV without pressure relief valve. For pumps with variable displacement. Pressure gauge connection	SAE flange	155G5032
155B372.		O-ring boss	155G5031

Port connections: P = 1 in SAE flange (415 bar [6020 psi]); MA = G $^{1}/_{4}$; LS = G $^{3}/_{8}$ $P = 1^{1}/_{16} - 12$ UN O-ring Boss 6020 psi; MA = $1/_{2} - 20$ UNF O-ring Boss; LS = $3/_{4} - 16$ UNF O-ring Boss

SAUER PVG 120 Proportional Technical Information PVG 120 Proportional Valve Modules and Code Numbers

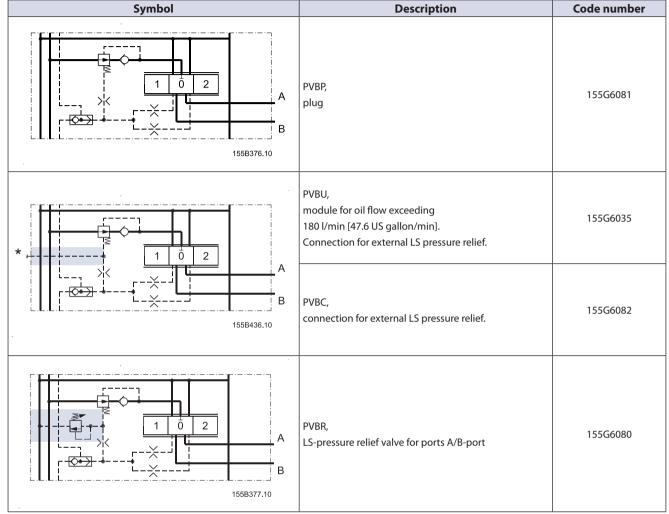
PVP, Accessories for Open Centre Pump Side Modules

Symbol	Description		Code number
	Prop, PVPD		155G5041
P	PVEH, hydraulically actuated relief valve		155G5061*
	PVPE, electrically actuated relief valve.	(12V <u></u>)	155G5052
	Normally open solenoid valve	(24 V <u></u>)	155G5054

* Connection for external pilot pressure: only available with G $^{1\!/}_{4}$ thread

SAUER PVG 120 Proportional Technical Information PVG 120 Proportional Valve Modules and Code Numbers

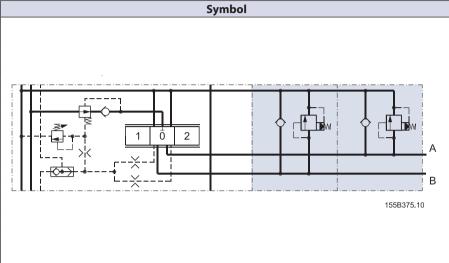
PVB, Basic Modules


				umber
Sumbol	Description		No facilities for	Facilities for
Symbol	Desci	iption	shock valves A/B	shock valves A/B
			(low modules)	(high modules)
		Metric flange	155G6014	155G6005
	Pressure compensated basic module	SAE flange	155G6016	155G6007
B 155B376.10		O-ring boss	155G6015	155G6006

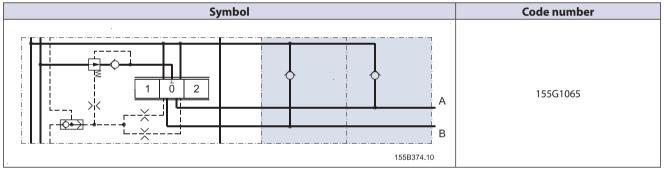
Port connections: A/B: ³/₄ in SAE flange 415 bar (6020 psi); A/B: 1¹/₁₆ - 12 UN O-ring Boss 415 bar (6020 psi)

SAUER
DANFOSSPVG 120 Proportional Valve
Technical Information Modules and Code Numbers

PVB, Accessories for Basic Modules



Port connections: G¹/₄: only available with G¹/₄ thread


SAUER DANFOSS PVG 120 Proportional Technical Information PVG 120 Proportional Valve Modules and Code Numbers

PVLP, Shock and Suction Valves for A and B Port Connections

Fixed s	setting	Code number
bar	[psi]	
50	[725]	155G0050
75	[1100]	155G0075
100	[1450]	155G0100
125	[1800]	155G0125
150	[2200]	155G0150
175	[2550]	155G0175
200	[2900]	55G0200
225	[3240]	155G0225
250	[3650]	155G0250
275	[4000]	155G0275
300	[4350]	155G0300
325	[4700]	155G0325
350	[5100]	155G0350
375	[5450]	155G0375
400	[5800]	155G0400

PVLA, Suction Valve

SAUER
DANFOSSPVG 120 Proportional Valve
Technical Information Modules and Code Numbers

PVBS, Main Spools

				Code nur	nber Size	
			A	В	С	D ¹⁾
Symbol	ISO Symbol	Description	65 l/min	95 l/min	130 l/min	180 l/min
			[17.2 US	[25.1 US	[34.3 US	[47.6 US
			gal/min]	gal/min]	gal/min]	gal/min]
AB	A B					
		4-way, 3-position.				
TPT	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Closed neutral position	155G6452	155G6454	155G6456	155G6458
155B235.10	155B384.10	· · · · · · · · · · · · · · · · · · ·				
	•					
		4				
		4-way, 3-position.		155G6464	155G6466	155G6468
TPT	РТ	Throttled, open neutral position		15500404	155G0400	15500400
155B236.10	. 155B385.10	position				
· ·						
	B					
		3-way, 3-position			155G6476	155G6478
TPT	РТ	$P \rightarrow B$				
155B226.10	155B386.10					

1) Main spool D is used for oil flow exceeding 180 l/min [47.6 US gal/min]

PVM, Mechanical Actuation

Symbol	Description		Code number
	PVM,	22.5°	155G3040
	standard, spring centered mechanical actuation. Individual oil flow adjustment to ports A and B.	37,5°	155G3041
155B387.10	PVM,	22,5°	155G3050
	mechanical actuation for hydraulically operated valves. Individual oil flow adjustment to ports A and B.	37,5°	155G3051

PVMD, Cover for Mechanical Actuation

Symbol	Description	Code number
	PVMD,	155G4061
	cover for purely mechanically operated valve.	15504001

PVH, Hydraulic Actuation

Symbol	Description		Code number
	PVH,	G ¹ /4	155G4022
155B339.10	cover for hydraulically operated valve.	¹ / ₂ in-20 UNF	155G4021

PVHC, High Current Actuator

Sumbol	Description	Code number		
Symbol	Description	Hirschmann	AMP	Deutsch
	12 V	-	-	11110597
155B388.10	24 V	-	-	11110598

PVE, Electrical Actuation

Symbol	Description	Description		Code number	
Symbol	Description		Hirschmann	AMP	Deutsch
	PVEO,	12 V	155G4272	155G4282	11110601
155B388.10	ON/OFF	24 V	155G4274	155G4284	11110652
	PVEH, Proportional high. Puls width modulation, short reaction time, low hy active fault monitoring, inductive transducer	rsteresis,	155G4092	155G4094	-
1 0 2 T55B389.10	PVEH, Proportional high. Puls width modulation, short reaction time, low hy passive fault monitoring, inductive transducer	rsteresis,	155G4093	155G4095	11111206
. 1558389.10	PVES Proportional Super. Puls width modulation, short reaction time, 0% hysteresis passive fault monitoring, inductive transducer		11111210	_	11111207
	PVED-CC, CANbus SAE J 1939/ISOBUS		-	11111117	11111113

PVG 120 Proportional Valve Technical Information Modules and Code Numbers

PVT, Tank Side Modul

Symbol	Description		Code number
Upper part		Metric flange	155G7020
	Upper part: Without active elements	SAE flange	155G7022
		O-ring boss	155G7021
		Metric flange	155G7023
	Upper part: With LX connection	SAE flange	155G7025
1 LX FF 155B380.10		O-ring boss	155G7024
Lower part	Lower part:	Mounting	155G7060
155B435.10	Without active elements	Mounting thread UNF	155G7062
Lower part	Lower part: PVE, pilot oil supply for electrical actuations. Filter mesh: 125µm	Mounting thread metric	155G7040
155B381.10		Mounting thread UNF	155G7042
Lower part	Lower part: PVH, pilot oil supply for hydraulic actuations. Filter mesh: 125µm	Mounting thread metric	155G7043
155B381.10		Mounting thread UNF	155G7044

Port connections: T = 1 in SAE flange 210 bar [3045 psi]; PP = G 3/8 [³/₈ in SAE] LX = G 3/8 [³/₈ in SAE].

T = ¹⁵/16 - 12 UN O-ring Boss 3045 psi; PP = ³/4 - 16 UNF O-ring Boss; LX = ³/4 - 16 UNF O-ring Boss

PVAS, Assembly Kit

			Code num	ber 155G				
	1 PVB	2 PVB	3 PVB	4 PVB	5 PVB	6 PVB	7 PVB	8 PVB
Tie bolts and seals	155G8031	155G8032	155G8033	155G8034	155G8035	155G8036	155G8037	155G8038

PVG 120 Proportional Valve AUER PVG 120 Proportional ANFOSS Technical Information Modules and Code Numbers

Modules for Oil Flow Exceeding 180 l/min [47.6 US gal/min]

Pump with fixed displacement

1. Ordering:

Order accessory module 155G6035, main spool D, and pump side modules 155G5027/155G5028/155G5029

2. Conversion:

In open centre systems a max. oil flow exceeding 180 l/min [47.6 US gal/min] is achieved by changing the following parts in the pump side and basic modules:

- Open centre pump side module
 - a. Pressure adjustment spool
 - b. The springs behind the pressure adjustment spool
 - c. The plug behind the pressure adjustment spool
 - Parts from kit 155G5035 may be used.
- Closed centre pump side module

A closed centre pump side module can be changed into an upgraded open centre pump side module by means of kit 155G5035.

- Basic module
 - d. Spring behind pressure compensator
 - e. The plug behind the pressure compensator

Spring and plug with code number 155G6035 (PVBU, accessory module).

Pump with variable displacement

1. Ordering:

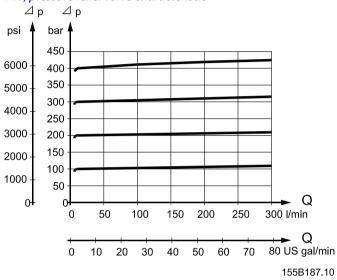
Order accessory module 155G6035 and main spool D.

2. Conversion:

In closed centre systems a max. oil flow exceeding 180 l/min [47.6 US gal/min] can be achieved by changing the following basic module parts:

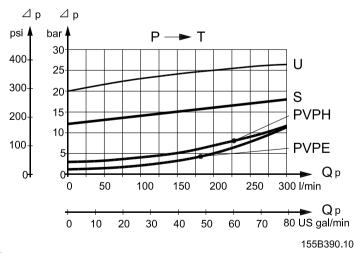
- a) Spring behind pressure compensator
- b) The plug behind the pressure compensator

The code number of the spring and plug is 155G6035 (PVBU, accessory module).


PVG 120 Proportional Valve Technical Information Technical Characteristics

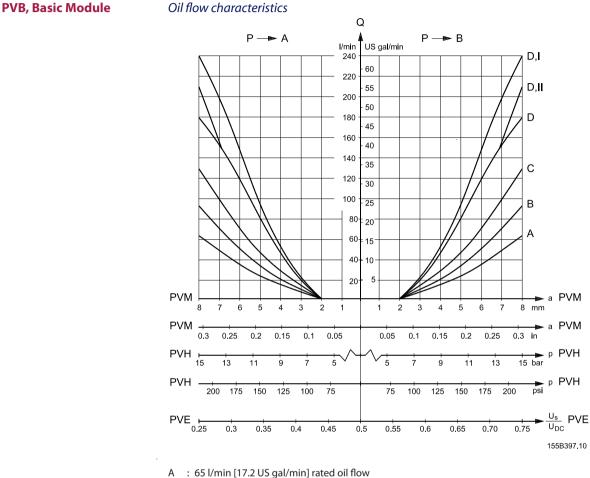
General

All characteristics and values in this Technical Information are typical measured results. For the hydraulic system a mineral based hydraulic oil with a viscosity of $21 \text{mm}^2/\text{s}$ [102 SUS] and a temperature of 50°C [122°F] was used.



PVP, pressure relief valve characteristic

The pressure relief valve is adjustable within the 50-400 bar [725-6225 psi] range by means of a screw.



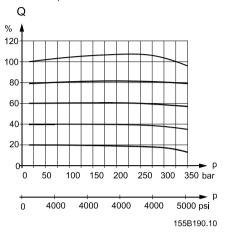
 $\label{eq:U} \begin{array}{l} \mathsf{U} = \mathsf{PVP} \text{ for PVB oil flow} > 180 \ \text{l/min} \ [47.6 \ \text{US gal/min}] \\ \mathsf{S} = \mathsf{PVP} \text{, standard} \end{array}$

SAUER DANFOSS PVG 120 Proportional Valve Technical Information **Technical Characteristics**

- B : 95 l/min [25.1 US gal/min] rated oil flow
- C : 130 l/min [34.3 US gal/min] rated oil flow
- D : 180 l/min [47.6 US gal/min] rated oil flow
- D.I : 240 l/min [63.4 US gal/min] rated oil flow

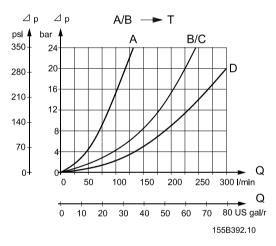
(Closed centre system with basic module for oil flow > 180 l/min [47.6 US gal/min]) D.II : 210 l/min [55.5 US gal/min] rated oil flow

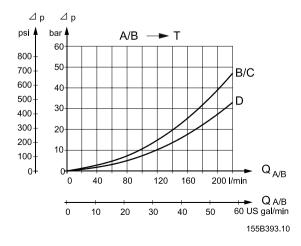
(Open centre system with basic module for oil flow > 180 l/min [47.6 US gal/min] and pump side module 155G5027/155G5028/155G5029).


- $U_{\rm S}$ = Signal voltage
- U_{DC} = Supply voltage

PVG 120 Proportional Valve Technical Information Technical Characteristics

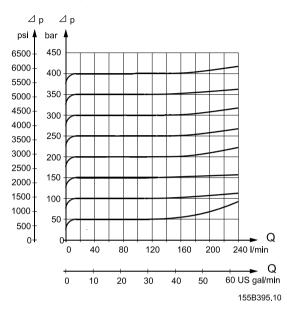
PVB, Basic Module

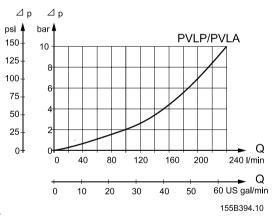

Load independent oil flow


Pressure drop (Q) T in neutral position (spools with open neutral position) (p)

The oil flow (Q) is shown as a function of the load (p).

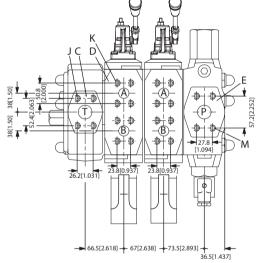
Pressure drop $A/B \rightarrow T$ at full spool travel

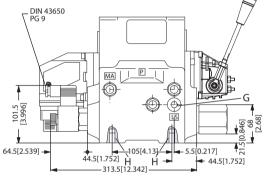

Pressure drop $A/B \rightarrow T$ in neutral position (spools with open neutral position)


PVG 120 Proportional Valve Technical Information Technical Characteristics

PVLP, Shock Valve (Pressure Relief Valve in PVLP) The shock valve PVLP is designed to absorb shock effects. Consequently, it shall not be used as a pressure relief valve.

PVLP/PVLA, Suction Function


PVLP/PVLA, suction function characteristics

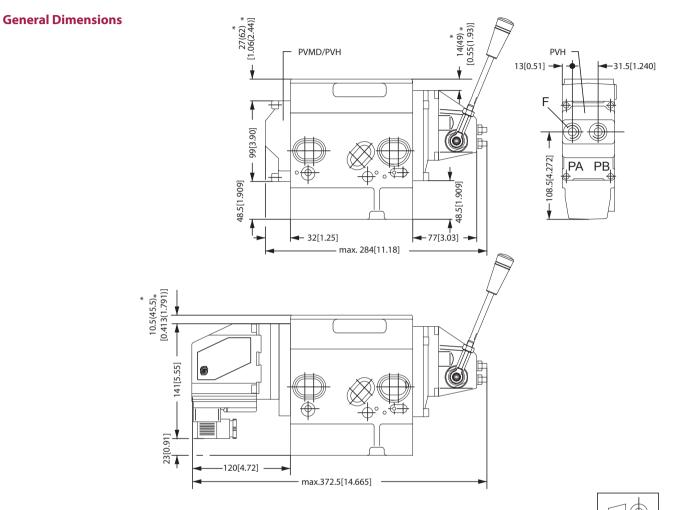


PVG 120 Proportional Valve Technical Information Dimensions

Valve Dimensions 158[6.22] -152[5.98] G \bigcirc N Ó 220[8. ٢ 185[7.28 ۲ 47[5.79] 10.5[0.413] 2014 72L 47[5. 13.5[4.468] 0 Î PP 95[3.74] Ā 69 [2.72] 0 DIN 43650 98] 55.5[2.185] 27[1.06] 15[0.59] 35.5 PG 11 [prop.] PG 9 [on-off] 33.5 25[0.98] max.61[2.40] -21.5[0.846] -max. 262.5[10.335]-11114 371

V310154.A

V310153.B


- C : 1 in SAE flange (210 bar) [1 in SAE flange/1 ⁵/₁₆ 12 UN O-ring Boss (3045 psi)]
- D : $\frac{3}{4}$ in SAE flange (415 bar) [$\frac{3}{4}$ in SAE flange/1 $\frac{1}{16}$ 12 UN O-ring Boss (6020 psi)]
- E : 1 in SAE flange (415 bar) [1 in SAE flange/1 5 /₁₆ 12 UN O-ring Boss (6020 psi)]
- F : G $\frac{1}{4}$ [$\frac{1}{2}$ in 20 UNF]
- G : G $^{3}/_{8}$ [$^{3}/_{4}$ in 16 UNF]
- H : M12; 18 mm deep $[^{7}/_{16}$ 14 UNC; 0.7 in deep]
- J : M10; 17 mm deep $[^{3}/_{8} 16 \text{ UNC}; 0.7 \text{ in deep}]$
- K : M10; 17 mm deep $[^{3}/_{8}$ 16 UNC; 0.7 in deep]
- M : M12; 18 mm deep $[^{7}/_{16}$ 14 UNC; 0.7 in deep]

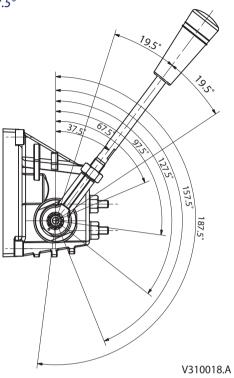
N : $G^{3}/_{8} - [^{3}/_{4} in - 16 UNF]$

	PVB	1	2	3	4	5	6	7	8
	mm	170	237	304	371	438	505	572	639
L	in	[6.69]	[9.33]	[11.97]	[14.61]	[17.24]	[19.88]	[22.51]	[25.16]
1 1	mm	263.5	330.5	397.5	464.5	531.5	598.5	665.5	732.5
LI	in	[10.38]	[13.02]	[15.66]	[18.30]	[20.94]	[23.58]	[26.22]	[28.86]
L2	mm	255	322	389	456	523	590	657	724
LZ	in	[10.05]	[12.69]	[15.33]	[17.97]	[20.61]	[23.25]	[25.89]	[28.53]

PVG 120 Proportional Valve Technical Information Dimensions

F: G 1/4 [1/2 in - 20 UNF]

* Dimensions in parenthesis apply to high basic modules



PVG 120 Proportional Valve Technical Information Lever Positions

PVM, Lever Positions

Base with an angle of 37.5°

Base with an angle of 22.5°

Building in Safety

All makes and all types of control valves (incl. proportional valves) can fail. Thus the necessary protection against the serious consequences of function failure should always be built into the system. For each application an assessment should be made for the consequences of pressure failure and uncontrolled or blocked movements.

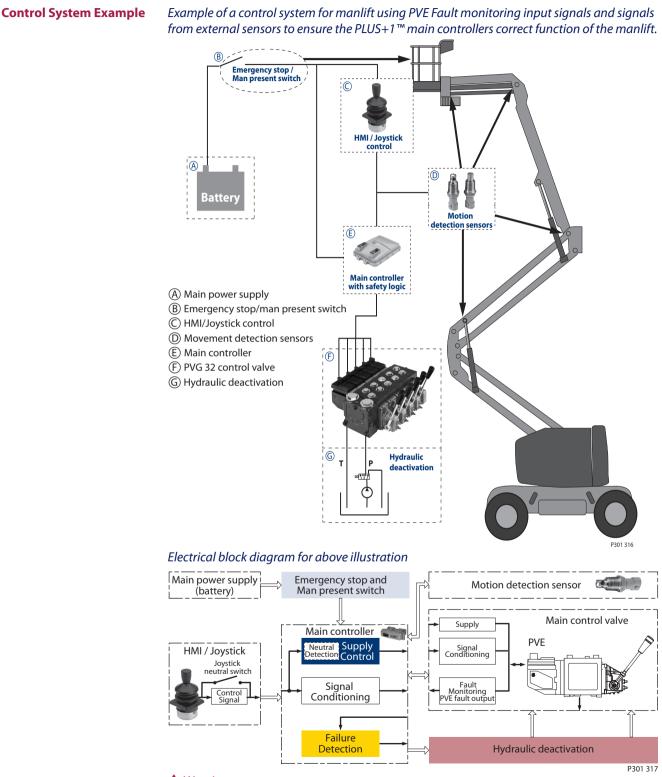
To determine the degree of protection that is required to be built into the application, system tools such an FMEA (Failure Mode and Effect Analysis) and Hazard and Risk Analysis can be used.

FMEA (Failure Mode and Effect Analysis) IEC EN 61508

FMEA is a tool used for analyzing potential risks. This analytical technique is utilized to define, identify, and prioritize the elimination or reduction of known and/or potential failures from a given system before it is released for production. Please refer to IEC FMEA Standard 61508.

Hazard and Risk Analysis ISO 12100-1 / 14121

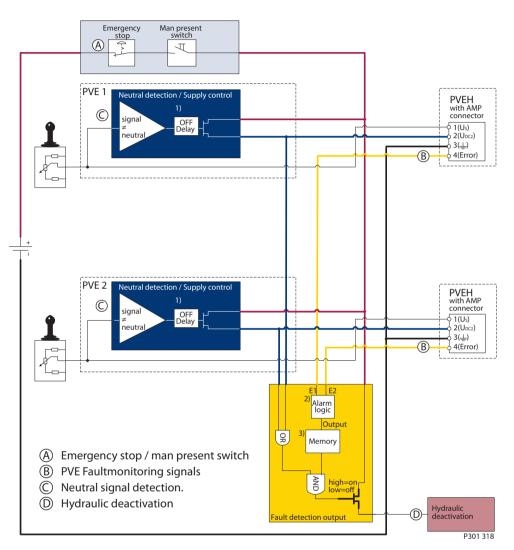
This analysis is a tool used in new applications as it will indicate whether there are special safety considerations to be meet according to the machine directives EN 13849. Dependent on the determined levels conformety this analysis will detirmine if any extra requirements for the product design, development process, production process or maintenance, i.e. the complete product life cycle.


A Warning

All makes/brands and types of directional control valves – inclusive proportional valves – can fail and cause serious damage. It is therefore important to analyze all aspects of the application.

Because the proportional valves are used in many different operation conditions and applications, the manufacturer of the application is alone responsible for making the final selection of the products – and assuring that all performance, safety and warning requirements of the application are met.

The process of choosing the control system – and safety levels – is governed by the machine directives EN 13849 (Safety related requirements for control systems).

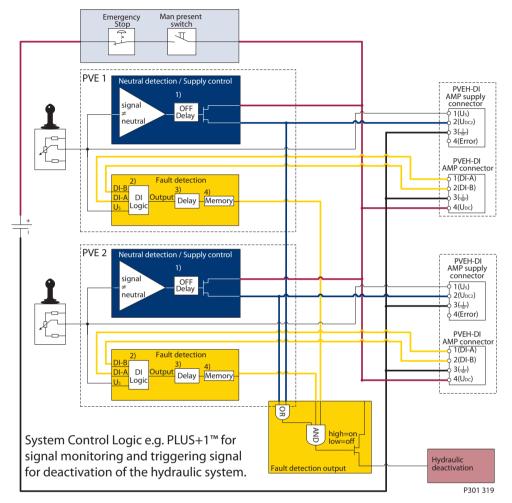

A Warning

It is the responsibility of the equipment manufacturer that the control system incorporated in the machine is declared as being in confirmity with the relevant machine directives.

Control System Example (continued)

Example of a typical wiring block diagram using PVEH with neutral power off switch and fault monitoring output for hydraulic deactivation.

System Control Logic e.g. PLUS+1[™] for signal monitoring and triggering signal for deactivation of the hydraulic system.


A Warning

It is the responsibility of the equipment manufacturer that the control system incorporated in the machine is declared as being in confirmity with the relevant machine directives.

Control System Example (continued)

Example of fault monitoring for deactivation of the hydraulic system with extra fault inputs using the PVE's with DI (Direction Indication) function.

A Warning

It is the responsibility of the equipment manufacturer that the control system incorporated in the machine is declared as being in confirmity with the relevant machine directives.

Other non-electrical modules which can be used in connection with hydraulic deactivation at different levels.

PVG32 – Mainly used in system with fixed displacement pumps

- PVSK, commonly used in crane application full flow dump
- PVPX, LS dump to tank

PVG100 – Alternative LS dump or pilot supply disconnect

- PVPP, pilot oil supply shut off
- External cartridge valve connecting LS Pressure to Tank
- External cartridge valve connecting main Pressure to Tank

PVG120 – Pump disconnect/block for variable pumps

PVPE, full flow dump for the PVG 120

SAUER
DANFOSSPVG 120 Proportional Valve
Technical Information Notes

PVG 120 Proportional Valve AUER FYG 120 Hoportaina ANFOSS Technical Information **Other Operating Conditions**

Oil

The main duty of the oil in a hydraulic system is to transfer energy; but it must also lubricate the moving parts in hydraulic components, protect them against corrosion, and transport dirt particles and heat out of the system. It is therefore important to choose the correct oil with the correct additives. This gives problem-free operation and long working life.

Mineral oil

For systems with PVG 120 valves Sauer-Danfoss recommends the use of mineral-based hydraulic oil containing additives: Type H-LP (DIN 51524) or HM (ISO 6743/4).

Non-flammable fluids

Phosphate-esters (HFDR fluids) can be used without special precautions. However, dynamic seals must be replaced with FPM (Viton) seals. Please contact the Sauer-Danfoss Sales Organisation if the PVG 120 valve is to be used with phosphate-esters. The following fluids should only be used according to agreement with the Sales Organisation for Sauer-Danfoss:

- Water-glycol mixtures (HFC fluids)
- Water-oil emulsions (HFB fluids)
- Oil-water emulsions (HFAE fluids)

Biodegradable oils

PVG 120 valves can be used in systems using rape-seed oil. The use of rape-seed oil is conditional on

- it complying with the demands on viscosity, temperature and filtration etc. (see chapters below and technical data page 10).
- the operating conditions being adapted to the recommendations of the oil supplier.

Before using other biodegradable fluids, please consult the Sauer-Danfoss Sales Organisation.

Particle Content, Degree Oil filtration must prevent the particle content from exceeding an acceptable level, i.e. an of Contamination acceptable degree of contamination. Maximum contamination for PVG 120 is 23/19/16 (see ISO 4406). Calibration in accordance with the ACFTD method.

> In our experience a degree of contamination of 23/19/16 can be maintained by using a filter fineness as described in the next section.

SAUER PVG 120 Proportional V Technical Information PVG 120 Proportional Valve Other Operating Conditions

Filtering	Effective filtration is the most important precondition in ensuring that a hydraulic system performs reliably and has a long working life. Filter manufacturers issue instructions and recommendations. It is advisable to follow them.
	System filters Where demands for safety and reliability are very high a pressure filter with bypass and indicator is recommended. Experience shows that a 10 μm nominal filter (or finer) or a 20 μm absolute filter (or finer) is suitable. It is our experience that a return filter is adequate in a purely mechanically operated valve system.
	The fineness of a pressure filter must be selected as described by the filter manufacturer so that a particle level of 23/19/16 is not exceeded. See "Particle content, degree of contami-nation". The filter must be fitted with pressure gauge or dirt indicator to make it possible to check the condition of the filter.
	In systems with differential cylinders or accumulators the return filter must be sized to suit the max. return oil flow. Pressure filters must be fitted to suit max. pump oil flow.
	Internal filters The filters built into PVG 120 are not intended to filter the system but to protect important components against large particles. Such particles can appear in the system as a result of pump damage, hose fracture, use of quick-couplings, filter damage, starting up, contamination, etc.
	The filter that protects the pilot supply in the tank side module has a mesh of 125 μm . It is obtainable as a spare part and is easy to replace.
	The filter protecting the essential PVE parts has a mesh of 125 $\mu m.$
Conversion Factors	1 Nm = 885.1 lbf-in 1 N = 22.48 lbf-in 1 bar = 14.50 psi 1 mm = 0.0394 in $1 \text{ cm}^3 = 0.061 \text{ in}^3$ 1 I = 0.22 gallon, UK 1 I = 0.264 gallon, US °F = 1.8 • °C + 32

SAUER PVG 120 Proportional **DANFOSS** Technical Information PVG 120 Proportional Valve **Order Specification**

Order Form

An order form for Sauer-Danfoss PVG 120 hydraulic valve is shown on next page. The form can be obtained from the Sauer-Danfoss Sales Organisation. The module selection chart on the next page and the order form are divided into fields.

Each module has its own field:

- 0: PVP, pump side modules
- d: PVPD, PVPH and PVPE, accessory modules
- 1-8: PVB, basic modules
- e: PVBS, main spools
- f: PVBP, PVBR, PVBU and PVBC, accessory modules
- a: PVM, mechanical actuation
- c: PVMD, cover for mechanical operation PVH, cover for hydraulic operation PVEO and PVEH, electrical actuations
- b: PVLP, shock and suction valve PVLA, suction valve
- 9: PVT, tank side module
- 10: PVAS, assembly kit

Please state:

- Code numbers of all modules required
- Required setting (p) for pump side module
- Required setting of LS_{A/B} pressure relief valves, if accessory module PVBR is ordered.

PVG 120 Proportional Valve Technical Information Order Specification

Order Form

Reordering

The space at the top right-hand corner of the form is for Sauer-Danfoss to fill in. The code number for the whole of the specified valve group (PVG No.) is entered here. In the event of a repeat order all you have to do is enter the number Sauer-Danfoss has given on the initial confirmation of order.

If PVG 120 is to be used with phosphate-esters this must be stated on the order form (see also page 38, "Non-flammable fluids").

PVG 1 Specification She
PVG No.
Customer No.
Revision No.

Function	A-Port	0	155G	155G			B-Port
			p =	bar			
	a 155G	1	155G	155G	е	155G	c
	b 155G	f	155G	LS _{AB}	bar	155G	b
	a 155G	2	155G	155G	е	155G	С
	b 155G	f	155G	LS _{AB}	bar	155G	b
	a 155G	3	155G	155G	e	155G	с
	b 155G	f	155G	LS _{AB}	bar	155G	b
	a 155G	4	155G	155G	e	155G	с
	b 155G	f	155G	LS _{AB}	bar	155G	b
	a 155G	5	155G	155G	e	155G	с
	b 155G	f	155G	LS _{AB}	bar	155G	b
	a 155G	6	155G	155G	е	155G	С
	b 155G	f	155G	LS _{AB}	bar	155G	b
	a 155G	7	155G	155G	e	155G	с
	b 155G	f	155G	LS _{AB}	bar	155G	b
	a 155G	8	155G	155G	e	155G	с
	b 155G	f	155G	LS _{AB}	bar	155G	b
Remarks		9	155G				
		10	155G				
		11	155G				

Filled in by

991L1868 ver. 03.2002

Date

PVG 120 Proportional Valve Technical Information Module Selection Chart

PVB, high basic module Weight SAE O-ring Metric flange Boss flange kg [lb] 155G6006 Facilities for shock valves AB 155G6007 155G6005 10.2 [22.5] PVB, low basic module SAE O-ring Metric Weight kg [lb] flange Boss flange No facilities for shock valves AB 155G6016 155G6015 155G6014 8.9 [19.6] Accessory modules for PVB Weight kg [lb] Plug, PVBP 155G6081 0.4 [0.9] LSA/B press. relief valve, 155G6080 0.4 [0.9] 0 **PVBR** External LS connection, 155G6082 0.4 [0.9] æ **PVBC** Module for oil flow > 180 l/min 155G6035 0.4 [0.9] [47.6 US gal/min], PVBU d 1-8 PVBS, mechanical actuation **Oil flow** l/min A В С D [US gal 65 [17.2] 95 [25.1] 130 [34.3] 180 [47.6] Symbol XI, III 0000°, 155G6452 155G6454 155G6456 155G6458 e Ò 155B384.10 Π<u>₽</u>X 155G6464 155G6466 155G6468 9 10 155B385. 155G6476 155G6478 60 155B386 10 kg [lb] 0.35 [0.8] 0.35 [0.8] 0.35 [0.8] 0.35 [0.8] Weight IJ 11 ۲ Å C PVM, mechanical actuation 155G3040 PVM + PVMD or PVM + PVE b PVM + PVH ۲ 155G3050 þ Weight 0.5 kg [1.1 lb] J V310173.A PVT, tank side module SAE O-ring Metric Weight kg [lb] flange Boss flange Upper part excl. LX connection 155G7022 155G7021 155G7020 4.6 [10.1] 155G7025 Upper part incl. LX connection 155G7024 4.6 [10.1] 155G7023 Lower part incl. pilot oil supply PVE for 155G7042 155G7040 4.4 [9.7] Lower part excl. pilot oil supply for PVE 155G7062 155G7060 4.4 [9.7]

155G7044

155G7043

4.4 [9.7]

Lower part incl. pilot oil supply for PVH

SAUER
DANFOSSPVG 120 Proportional Valve
Technical Information Module Selection Chart

			O-ring Boss	SAE flange	Metric flange	Weight kg [lb]					Weigh kg [lb]
	Excl. PVPD, PVPH,	PVPE	155G5023	155G5037	155G5021	10.0 [22.]		Plug, PVP	D	155G504 [°]	
Open centre	For PVB-oil flow > 180 l/min [47.6 US		155G5028	155G5029	155G5027	10.0 [22.]		Hydraulic valve, PVF	relief	155G506	0.5 [1.1
centre	Excl. PVPD, PVPH,		13303020	13303029	15505027	10.0 [22.	''		relief 12 V	155G5052	2 0.7 [1.5
Closed	Incl. pressure relie and plug PVPD	fvalve	155G5022	155G5038	155G5020	10.2 [22.	5]	valve, PVF		155G5052	
centre	Excl. pressure relie	ef valve	155G5031	155G5032	155G5030	11.0 [24.3	3]				
					×				1	PVMD, cou	er for PVM
											Weigh
										4550404	kg [lb]
				Contraction of the second seco					l	155G406	0.3 [0.7
								PVH, cove	er for PVRI	Н	
		2 00		Dun	d			_			Weigh kg [lb
			1-8					1/2 in - 20	UNF	155G402 ²	
			\sim					G 1/4		155G402	
						Floctrice	alact	uation PVE	l		0.1[0.5
			0000			Connect			/EH		
	F F		0000	1110		connect	.01		· 32 V		PVEO
		\otimes				Ы			onitoring		
e			0000		>>			Active	Passive	12 V	24 V
0						Hirschma	ann	155G4092	155G4093	3 155G42	72 155G42
<u> </u>						AMP		155G4094	155G4095	5 155G42	82 155G42
a			9			Weight	kg	1.25	1.25		
									1.25	1.0	1.0
							[lb]	[2.76]	[2.76]	1.0	
								[2.76] valve A/B	[2.76]	[2.2]	[2.2]
			500						[2.76]	[2.2]	[2.2]
								valve A/B	[2.76]	[2.2] PVLP, shoc valve A/B	[2.2]
							ction	valve A/B Weight	[2.76]	[2.2] PVLP, shoc valve A/B	[2.2]
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shoc valve A/B Press	[2.2]
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shoo valve A/B Press bar [psi	[2.2] k and suctions ure setting
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shoo valve A/B Press bar [psi 50 725	[2.2]
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2]PVLP, shock valve A/BPressbar[psi5072575	[2.2] k and suct ure setting 155G00 0 155G00 0 155G01
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shoo valve A/B Press bar [psi 50 725 75 110 100 145	[2.2] k and suct ure setting 155600 155601 0 155601 0 155601
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shoo valve A/B Press bar [psi 50 725 75 110 100 145 125 180	[2.2] k and suct ure setting 1 155600 0 155601 0 155601 0 155601 0 155601
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shoot valve A/B Press bar [psi 50 725 75 110 100 145 125 180 150 220	[2.2] k and suctions ure setting 155600 155601 155601 155601 155601 155601 155601 155601
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shock valve A/B bar [psi 50 725 75 1100 100 145 125 1800 150 2200 175 255	[2.2]
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shock valve A/B bar [psi 50 725 75 110 100 145 125 180 150 220 175 255 200 290	[2.2]
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shock valve A/B bar [psi 50 725 75 110 100 1450 125 180 150 2200 200 290 225 325	[2.2] k and suctions setting 5 155G00 5 155G01 5 155G01 5 155G01 5 155G01 5 155G01 5 155G01 5 155G02 5 155G02 5 155G02
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shock valve A/B Press bar [psi 50 725 75 1100 100 1450 125 1800 150 2200 175 255 200 2900 225 3250 250 365	[2.2] k and suctions in the setting in the setting
						PVLA su	ction	valve A/B Weight kg [lb]	[2.76]	[2.2] PVLP, shoot valve A/B Press bar [psi 50 725 75 1100 100 1450 125 1800 150 2200 200 2900 225 3250 250 3650 275 4000	[2.2] k and suctions 155600 155600 155601 155601 155601 155601 155601 155601 155602 155602 155602 155602 155602 155602 155602
	assembly kit				v310173.A	PVLA su 155G10	Diese la construction	valve A/B Weight kg [lb] 0.2 [0.4]	[2.76]	[2.2] PVLP, shoot valve A/B press 50 725 75 1100 100 145 125 180 150 220 175 255 200 290 225 325 250 365 275 400 300 435	[2.2] k and suct 155G00 155G00 155G01 155G01 155G01 155G01 155G01 155G01 155G02 155G02 155G02 155G02 155G02 155G03 155G03 155G03
PVAS, o	1			4	b b V310173.A	PVLA su 155G10	7	valve A/B Weight kg [lb] 0.2 [0.4]		[2.2] VLP, shoot valve A/B Press 50 725 75 1100 100 145 125 180 150 220 175 255 200 290 225 365 275 400 300 435 325 470	[2.2] k and suct 155600 155600 155600 155601 155601 155601 155601 155601 155601 155601 155602 155602 155602 155602 155602 155603 155603 155603 155603
	1 155G8031	2 155G8032	 	4 155G8034	b V310173.A	PVLA su 155G10 6 55G8036 1	7 555680	valve A/B Weight kg [lb] 0.2 [0.4] 0.2 [0.4] 8 0.37 155680		[2.2] VLP, shoot valve A/B Press 50 725 75 110 100 145 125 180 150 220 175 255 200 290 225 325 275 400 300 435 325 470 350 510	[2.2] k and sucta 155600 155600 155601 155601 155601 155601 155601 155601 155601 155602 155602 155602 155602 155602 155603 155603 155603 155603 155603
	1 155G8031			4	b b V310173.A	PVLA su 155G10	7	valve A/B Weight kg [lb] 0.2 [0.4]		[2.2] VLP, shoot valve A/B Press 50 725 75 1100 100 1450 125 1800 150 2200 175 2550 200 2900 225 3250 275 4000 300 4350 325 4700 350 5100 375 5400	[2.2]

Products we offer:

- Bent Axis Motors
- Closed Circuit Axial Piston Pumps and Motors
- Displays
- Electrohydraulic Power Steering
- Electrohydraulics
- Hydraulic Power Steering
- Integrated Systems
- Joysticks and Control Handles
- Microcontrollers and Software
- **Open Circuit Axial Piston Pumps**
- Orbital Motors
- PLUS+1[™] GUIDE
- **Proportional Valves**
- Sensors
- Steering
- **Transit Mixer Drives**

Members of the Sauer-Danfoss Group:

Comatrol www.comatrol.com

Schwarzmüller-Inverter www.schwarzmueller-inverter.com

Turolla www.turollaocg.com

Valmova www.valmova.com

Hydro-Gear www.hydro-gear.com

Sauer-Danfoss-Daikin www.sauer-danfoss-daikin.com Sauer-Danfoss is a global manufacturer and supplier of highquality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster. Sauer-Danfoss – Your Strongest Partner in Mobile Hydraulics.

Go to www.sauer-danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Sauer-Danfoss.

We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Sauer-Danfoss representative nearest you.

Local address:

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Fax: +1 515 239 6618

Sauer-Danfoss GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany 1-5-28 Nishimiyahara, Yodogawa-ku Phone: +49 4321 871 0 +49 4321 871 122 Fax:

Sauer-Danfoss ApS DK-6430 Nordborg, Denmark Phone: +45 7488 4444 Fax: +45 7488 4400

Sauer-Danfoss-Daikin LTD. Shin-Osaka TERASAKI 3rd Bldg. 6F Osaka 532-0004, Japan Phone: +81 6 6395 6066 Fax: +81 6 6395 8585

www.sauer-danfoss.com