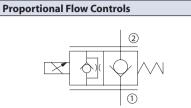


Proportional Directional	Model No.	Cavity	Description	Flow*	Pressure	Page
(2) (4)	PSV10-34-02	SDC10-4	Proportional Directional Valve	22 l/min [6 US gal/min]	250 bar [3600 psi]	11.12

Proportional Directional	Model No.	Cavity	Description	Flow*	Pressure	Page
A B	PDCV03-3Z11	ISO D03	Proportional Directional Valve	30.3 l/min [8 US gal/min]	320 bar [4640 psi]	11.13
	PDCV05-3Z11	ISO D05		60 l/min [16 US gal/min]	320 bar [4600 psi]	11.14

Proportional Directional	Model No.	Cavity	Description	Flow*	Pressure	Page
	PSV10-34-05	SDC10-4	Proportional Directional	22 l/min	250 bar	11.15
			Valve	[6 US gal/min]	[3600 psi]	
3						

Proportional Directional	Model No.	Cavity	Description	Flow*	Pressure	Page
(Å) (B)	PDCV03-3Y11	ISO D03	Proportional Directional Valve	30.3 l/min [8 US gal/min]	320 bar [4640 psi]	11.16
	PDCV05-3Y11	ISO D05		60 l/min [16 US gal/min]	320 bar [4600 psi]	11.17
e آ						


Proportional Flow Controls	Model No.	Cavity	Description	Flow*	Pressure	Page
	CP518-PNC	SDC08-2	Proportional Flow Control Valve, Non-Compensated, Normally Open	12 l/min [3 US gal/min]	210 bar [3000 psi]	11.18
	PSV10-NC	SDC10-2		40 l/min [11 US gal/min]	260 bar [3770 psi]	11.19
	PSV12-NC	SDC12-2		80 l/min [21 US gal/min]	260 bar [3770 psi]	11.20
	PSV16-NC	SDC16-2		100 l/min [26 US gal/min]	260 bar [3770 psi]	11.21

* Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

Proportional valves Quick reference

Model No.	Cavity	Description	Flow*	Pressure	Page
PSVP10-NCR	SDC10-2	Proportional Flow Control	55 l/min	260 bar	11.22
		Valve, Non-Compensated,	[14 US gal/min]	[3770 psi]	
PSVP12-NCR	SDC12-2	Normally Closed, Poppet	70 l/min	260 bar	11.23
		Туре	[18 US gal/min]	[3770 psi]	
PSVP16-NCR	SDC16-2		90 l/min	260 bar	11.24
			[24 US gal/min]	[3770 psi]	

Proportional Flow Controls	Model No.	Cavity	Description	Flow*	Pressure	Page
	CP518-PNO	SDC08-2	Proportional Flow Control	12 l/min	210 bar	11.25
(2)			Valve, Non-Compensated,	[3 US gal/min]	[3000 psi]	
	PSV10-NO	SDC10-2	Normally Open	45 l/min	260 bar	11.26
				[12 US gal/min]	[3770 psi]	
	PSV12-NO	SDC12-2		100 l/min	260 bar	11.27
				[26 US gal/min]	[3770 psi]	

Model No.	Cavity	Description	Flow*	Pressure	Page
PSVP10-NOR	SDC10-2	Proportional Flow Control	45 l/min	260 bar	11.28
		Valve, Non-Compensated,	[12 US gal/min]	[3770 psi]	
PSVP12-NOR	SDC12-2	Normally Open, Poppet	70 l/min	260 bar	11.29
		Туре	[18 US gal/min]	[3770 psi]	
PSVP16-NOR	SDC16-2		80 l/min	260 bar	11.30
			[21 US gal/min]	[3770 psi]	
	PSVP10-NOR PSVP12-NOR	PSVP10-NOR SDC10-2 PSVP12-NOR SDC12-2	PSVP10-NOR SDC10-2 Proportional Flow Control Valve, Non-Compensated, PSVP12-NOR SDC12-2 Normally Open, Poppet Type	PSVP10-NOR SDC10-2 Proportional Flow Control Valve, Non-Compensated, Normally Open, Poppet 45 l/min [12 US gal/min] PSVP12-NOR SDC12-2 Normally Open, Poppet Type 70 l/min [18 US gal/min] PSVP16-NOR SDC16-2 80 l/min	PSVP10-NOR SDC10-2 Proportional Flow Control Valve, Non-Compensated, Normally Open, Poppet Type 45 l/min 260 bar PSVP12-NOR SDC12-2 Normally Open, Poppet Type 70 l/min 260 bar

Proportional Flow Controls	Model No.	Cavity	Description	Flow*	Pressure	Page
	PFC10-RC	SDC10-2	Proportional Flow	30 l/min	260 bar	11.31
			Control Valve, Pressure	[8 US gal/min]	[3770 psi]	
	PFC12-RC	SDC12-2	Compensated, Restrictive	65 l/min	260 bar	11.32
			Type, Normally Closed	[17 US gal/min]	[3770 psi]	
ŢŢŢ₩	PFC16-RC	SDC16-2		90 l/min	260 bar	11.33
				[24 US gal/min]	[3770 psi]	

Proportional Flow Controls	Model No.	Cavity	Description	Flow*	Pressure	Page
	PFC10-RO	SDC10-2	Proportional Flow Control Valve, Pressure	30 l/min [8 US gal/min]	260 bar [3770 psi]	11.34
	PFC12-RO	SDC12-2	Compensated, Restrictive Type, Normally Open	60 l/min [16 US gal/min]	260 bar [3770 psi]	11.35
	PFC16-RO	SDC16-2		85 l/min [22 US gal/min]	260 bar [3770 psi]	11.36

^{*} Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

Proportional Flow Controls	Model No.	Cavity	Description	Flow*	Pressure	Page
	PFC10-PC	SDC10-3	Proportional Flow	40 l/min	260 bar	11.37
			Control Valve, Pressure	[11 US gal/min]	[3770 psi]	
	PFC12-PC	SDC12-3	Compensated, Priority	65 l/min	260 bar	11.38
			Type, Normally Closed	[17 US gal/min]	[3770 psi]	
	PFC16-PC	SDC16-3		85 l/min	260 bar	11.39
				[22 US gal/min]	[3770 psi]	

Proportional Flow Controls	Model No.	Cavity	Description	Flow*	Pressure	Page
	PFC10-PO	SDC10-3	Proportional Flow Control Valve, Pressure	35 l/min [9 US gal/min]	260 bar [3770 psi]	11.40
	PFC12-PO	SDC12-2	Compensated, Priority Type, Normally Open	70 l/min [18 US gal/min]	260 bar [3770 psi]	11.41
	PFC16-PO	SDC16-3	_	90 l/min [24 US gal/min]	260 bar [3770 psi]	11.42

Proportional Pressure Reducing	Model No.	Cavity	Description	Flow*	Pressure	Page
1	CP558-24	SDC08-3	Proportional Pressure	4 l/min	34 bar	11.43
			Reducing Valve, Direct Acting,	[1 US gal/min]	[500 psi]	
			Normally Open			
2 3						

Proportional Pressure Reducing	Model No.	Cavity	Description	Flow*	Pressure	Page
	XRP 044	SDC10-4	Proportional Pressure Reducing/Relieving Valve, Piloted, Normally Open	25 l/min [7 US gal/min]	50 bar [700 psi]	11.44

Proportional valves Quick reference

^{*} Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

Model No.	Cavity	Description	Flow*	Pressure	Page
PPR10-PAC	SDC10-3	Proportional Pressure	18 l/min	250 bar	11.45
		Reducing/Relieving Valve,	[5 US gal/min]	[3625 psi]	
		Piloted, Normally Closed			
	•				

Proportional Pressure Reducing	Model No.	Cavity	Description	Flow*	Pressure	Page
	XRP 06	NCS06/3	Proportional Pressure Reducing/Relieving Valve, Piloted, Normally Open	25 l/min [7 US gal/min]	315 bar [4500 psi]	11.46

Proportional Pressure Relieving	Mod
	XME
	CP5
Ш	

3

0

Model No.	Cavity	Description	Flow*	Pressure	Page
XMD 04	NCS04/2	Proportional Pressure	5 l/min	250 bar	11.47
		Reducing Valve,	[1 US gal/min]	[3600 psi]	
CP558-20	SDC08-2	Direct Acting,	8 l/min	210 bar	11.48
		Normally Open	[2 US gal/min]	[3000 psi]	

Proportional Pressure Relieving	Model No.	Cavity	Description	Flow*	Pressure	Page
2	PRV10-POC	SDC10-2	Proportional Relief Valve, Pilot Operated,	76 l/min [20 US gal/min]	250 bar [3600 psi]	11.49
	PRV12-POC	SDC12-2	Normally Closed	180 l/min [48 US gal/min]	250 bar [3600 psi]	11.50
				•		
i						
1						

Proportional Pressure Relieving	Model No.	Cavity	Description	Flow*	Pressure	Page
	XMP 06	NCS06/2	Proportional Relief Valve,	50 l/min	315 bar	11.51
			Pilot Operated,	[13 US gal/min]	[4500 psi]	
			Normally Open			
			•			
\searrow						
Ш. Ш.						

* Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

PROPORTIONAL VALVES

Proportional, or electro-proportional valves, provide infinitely variable control of flow, pressure, or direction, in response to a electric input signal.

There are four basic types of Comatrol proportional valves:

- Flow control valves.
- Pressure reducing/relieving valves.
- Pressure relief valves.
- Directional control valves

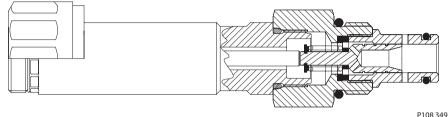
Proportional valves

PLUS+1[™] COMPLIANT

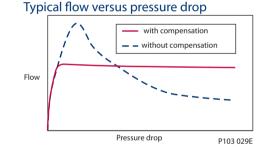
Comatrol solenoid valves are PLUS+1[™] compliant. PLUS+1 compliance means our valves are directly compatible with the PLUS+1 machine control architecture. Adding solenoid valves to your application using PLUS+1 GUIDE software is as easy as *drag-and-drop*. Software development that used to take months can now be done in just a few hours. For more information on PLUS+1 GUIDE, visit *www.comatrol.com* or *www.sauer-danfoss*. *com/plus1*. The table below details available GUIDE function blocks for controlling Comatrol solenoid valves.

GUIDE function blocks

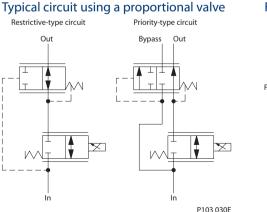
Two-way proportional	10106103
Three-way proportional	10106104



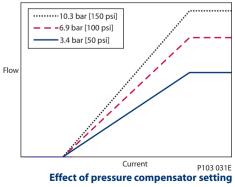
PROPORTIONAL FLOW CONTROL VALVES


Comatrol proportional flow control valves are 2-way, spool-type valves that are directly operated with a proportional electromagnetic solenoid actuator. By controlling electric current, these valves create an infinitely variable orifice.

Proportional flow control valve


These valves are designed to be used with a logic element to provide pressure compensation. Pressure compensation provides two advantages:

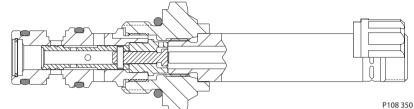
- 1. A constant pressure differential is maintained across the proportional valve (variable orifice), which maintains constant flow regardless of changes in operating pressure or load.
- 2. A constant pressure differential across the proportional valve limits the flow forces acting on the valve spool. At high flow and pressure, the electromagnetic and spring forces can be insufficient to maintain valve operation without pressure compensation.



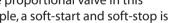
Typical circuits use restrictive-type or priority-type pressure compensators with proportional flow control valves to control speed of a hydraulic motor or cylinder.

Proportional flow control valves are available with a variety of flow capabilities (variable orifice sizes). By matching this flow capability to various pressure compensator settings, a wide range of flow vs. current control curves can be attained.

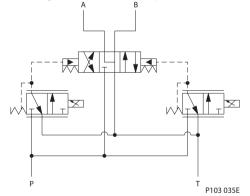
Flow versus current

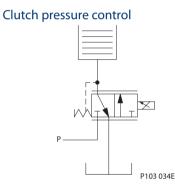


PROPORTIONAL **PRESSURE REDUCING/ RELIEVING VALVES**

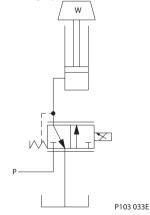

Proportional pressure reducing/relieving valves are 3-way valves that provide a controlled output pressure as a function of electric current, regardless of system pressure or flow (within the valve's limits). Direct acting designs are available for low-flow applications.

Direct-acting, proportional, pressure reducing valve




Proportional pressure reducing valves have a variety of applications including:

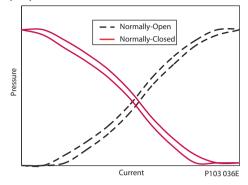
- Single acting cylinder position . control, e.g. combine header height control.
- Clutch or brake pressure control. .
- Pilot signal to a directional control valve. By slowly ramping the current to the proportional valve in this example, a soft-start and soft-stop is attained.



Pilot signal to directional spool valve

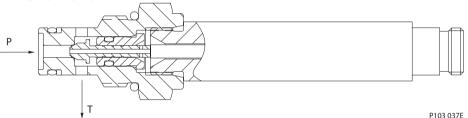
Single-acting cylinder piston control

High flow proportional pressure reducing valve functions can be created by using a proportional valve to pilot a differential sensing valve; see differential sensing valve application notes for more information.



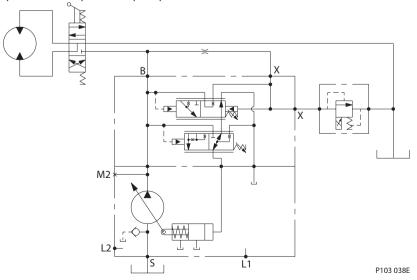
PROPORTIONAL PRESSURE RELIEF VALVES

Proportional pressure relief valves are 2way valves that provide a relief pressure as a function of electric current. Both normally-open (increasing pressure with increasing current), and normally-closed (decreasing pressure with increasing current) are available.


The normally-open proportional relief valve is a direct-acting design for low flow applications. High flow normallyopen proportional relief valve functions can be created by using a proportional valve to pilot a differential sensing valve;

Normally closed versus normally open proportional relief valves

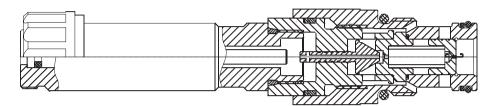
see differential sensing valve application notes for more information.


Normally-open proportional relief valve

Common applications for normally-open proportional relief valves are:

- Electro-proportional control of system relief pressure; see differential sensing valve application notes for more information.
- Electro-proportional remote pressure compensator control for open circuit piston pumps (for more information refer to BLN-10128 Series 45 Open Circuit Axial Piston Pumps Technical Information).

Remote pressure compensator pump control



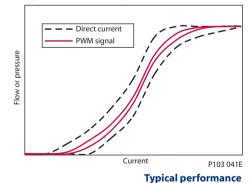
PROPORTIONAL PRESSURE RELIEF VALVES (continued)

Normally-closed proportional relief valves are available in direct-acting and pilotoperated designs. A direct-acting, normally-closed proportional relief valve is used for low flow applications. For high flow applications, internally pilot-operated cartridges are available.

Internally pilot-operated cartridge for high flow applications

P108 351

Cooling fan speed control


Common applications for normally-closed proportional relief valves are:

- Electro-proportional control of system relief pressure or electroproportional remote pressure compensator control for open circuit piston pumps as above, but where system requirements dictate full pressure with no electrical signal.
- Cooling fan speed control in hydrostatic fan drive systems. (For more information refer to BLN-10080 Fan Drives Systems and Components Technical Information).

ELECTRICAL REQUIREMENTS

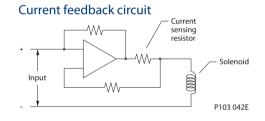
All proportional cartridge valves are analog-type valves that control flow or pressure as a function of electric current. For this reason, proportional valves should be driven with a currentcontrolled device that will maintain constant output regardless of changes in system voltage, line losses, or temperature. Typically available currentcontrolled valve drivers output a pulsewidth-modulated (PWM) square-wave signal. An advantage of a PWM signal is that the dither it provides significantly reduces hysteresis. Comatrol recommends using a 100-200 Hz dither for best performance.

Proportional valve hysteresis

______ P103 040 **pplication notes**

TERMS AND DEFINITIONS

Analog Proportional Valves are controlled by electric current, which may be direct current (DC) or a PWM signal.


Compensator is a hydraulic component that maintains a constant pressure drop across a fixed or variable orifice.

Current is the flow of electricity through a conductor or coil, normally measured in amps (A). Steady-state current flow in an electrical circuit can be calculated by Ohm's Law, as well as voltage and resistance.

Ohm's Law $I = \frac{V}{R}$

Current Control is a feature of almost all valve drivers. The output of analog proportional valves is a direct function of current. If a valve is controlled with voltage,

higher solenoid temperatures, which increase solenoid resistance, will result in lower valve output. To compensate for this, most valve drivers are designed with current feedback circuitry. This means that as solenoid temperature rises or as supply voltage and voltage losses change, the current and corresponding valve output are maintained.

Deadband is the range from zero to the minimum current which causes the valve to respond.

Digital Proportional Valves are extremely fast responding valves that are controlled by a precise on-off signal to produce an average output that is a function of duty cycle.

Dither is a "ripple" signal sent to a solenoid to reduce hysteresis. Dither can be a sine, square, or saw-tooth wave superimposed on a PWM signal or it can be a wave on top of a DC signal.

Duty Cycle is the % of time the valve is on divided by total time.

Hysteresis is the difference in output for a given input, depending on whether the input is increasing or decreasing. It is normally expressed as a % of the maximum rated output. For example, if a 160 l/min [42 US gal/min] proportional flow control valve provides 80 l/min [21 US gal/min] with 1 amp-increasing and 88 l/min [23 US gal/min] at 1 amp-decreasing, the hysteresis is:

⁽⁸⁸⁻⁸⁰⁾ = 5% 160

 I_{min} is the minimum current required for valve response (see deadband).

I max is the current required for maximum valve output.

TERMS AND DEFINITIONS (continued)

PWM is an acronym for Pulse-Width-Modulation. Most valve drivers use a currentcontrolled PWM output to reduce valve hysteresis and to allow current control without excessive heat generation. A typical PWM output is a square wave from 80-500 Hz.

Ramping is the application of current to a solenoid with a linear or non-linear ramp, rather than an instantaneous step. Ramping current on and off to a proportional valve provides actuators with soft-starts and soft-stops. Ramps can generally be set or pre-programmed into valve drivers.

Resistance is a component's opposition to the flow of electrical current, usually measured in ohms (Ω). Resistance depends on the conductivity of the material, as well as size, shape, and temperature. Solenoid resistance can vary greatly with temperature; to compensate for this, current-controlled drivers are generally always used with proportional valves.

Threshold is the minimum current required for valve response; see deadband.

Valve Driver is a generic term for any device that sends a signal to a proportional valve. A valve driver may range from a simple electronic circuit attached to a knob or lever up to a microcontroller with custom software and multiple inputs and outputs.

Voltage is the potential for current to flow in an electric circuit, usually measured in volts (V).

Specifications

Cartridge Valves Technical Information **Proportional Valves Proportional Directional** PSV10-34-02

Theoretical performance

OPERATION

This is a non-compensated proportional directional control valve.

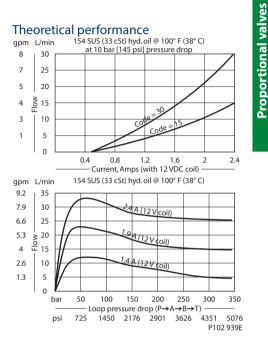
SPECIFICATIONS

PECIFICATIONS	Specifications		I heoretical per	lonnunce
	Rated pressure	250 bar [3600 psi]	Operati	ng curves made with circuit
	Rated flow at 10	22 l/min [6 US gal/min]	US having a gal/min ^{l/min} 26 cSt [²	a pressure drop of 10 Bar. 121 SUS] hyd.oil@50°C [122°F]
	bar [150 psi]		25	
	Weight	0.77 kg [1.70 lb]	6	
	Hysteresis	4% maximum		(\$2)
	Threshold current	0.5 A (12 VDC coil)		(S1)
		0.25 A (24 VDC coil)	4 - 15	
	Maximum control	1.5 A (12 VDC coil)	3 -	(52)
	current	0.8 A (24 VDC coil)	10	(52)
	Cavity	SDC10-4	2	
	Standard Coil	M16 26 Watt	1 - 5	
			'] +++-	
			0 0 1	
			(24 V) 0	0.25 0.5 0.75 (A) 0.5 1 1.5 (A)
			(12 V) 0	0.5 1 1.5 (A)
			US to wor	re compensation from Inlet 'k port at Max current [121 SUS] hyd.oil@50°C [122°F]
	Schematic			
		4	6-	22 l/min
		4	5 - 20	
			4 15	12 l/min
		-		
			10	
	S1	~ ^{\$2}	2 - 5	
	3	(1)	1- 1-	
	\bigcirc	<u> </u>		
		P102 711	0 50	100 150 200 250 Bar
DIMENSIONS		P102711	0 1	000 2000 3000 psi
m [in]	Cross-sectional v	iew	с.	(Differential pressure) P103 89
in (in)	CI055-Sectional V	iew		
/ 24mm			7/8-14 UNF 2A	
/ 🗷 9-11 Nm [6-8 II		m [33-37 lbf*ft]		٨
KIT P/N 17400031				®
/				
52 S2	<u>@@</u>	S1		- †
	40 /48			
				T NE
	<u> </u>			
	IOT SHOWN FOR CLARITY	· · · · · · · · · · · · · · · · · · ·		
	. O-RINGS (4) PLCS AS SHOWN		5	
		_>	<- [0.2]	
	127.5	-	62	_
~	[5.01]	>	[2.44]	
				P103 824

INFORMATION

nd ports = No Housing	Housing P/N No Housing
 AL 1/2 BSP AL #6 SAE AL #8 SAE sings available Seal Kit 354001919 354002019 ated flow nin [3.2 gal/min] 	NO FUGSING SDC10-4-L-3B SDC10-4-L-4B CP10-4-6S CP10-4-8S
	354001919

Cartridge Valves Technical Information **Proportional Valves Proportional Directional** PDCV03-3Z11



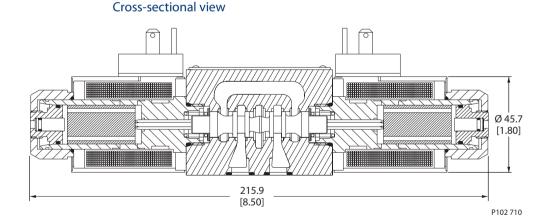
OPERATION

This valve is a proportional directional control.

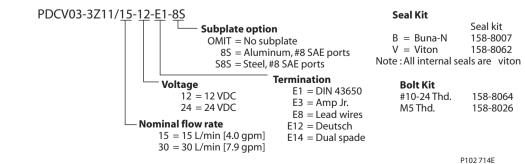
SPECIFICATIONS

Specifications Rated pressure	320 bar [4640 psi]
Rated flow at 10 bar	
	30 l/min [8 US gal/min]
[145 psi]	
Weight	2.40 kg [5.29 lb]
Hysteresis	6% maximum
Threshold current	0.5 A (12 VDC coil)
	0.25 A (24 VDC coil)
Maximum control	2.4 A (12 VDC coil)
current	1.2 A (24 VDC coil)
Cavity	ISO D03
Standard Coil	PD03 40 Watt
Coil nut	158-8005

Schematic


A В

Р Т


P102 711E

DIMENSIONS

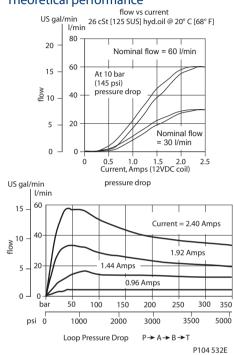
mm [in]

Cartridge Valves Technical Information Proportional Valves Proportional Directional PDCV05-3Z11

OPERATION

This is a non-compensated proportional directional control valve.

SPECIFICATIONS

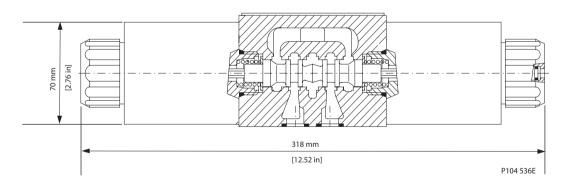

Specifications		
Rated pressure	320 bar [4600 psi]	
Rated flow at 10	60 l/min [16 US gal/min]	
bar [150 psi]		
Weight	6.60 kg [14.60 lb]	
Hysteresis	6% maximum	
Threshold current	0.2 A (12 VDC coil)	
	0.1 A (24 VDC coil)	
Maximum control	1.8 A (12 VDC coil)	
current	0.9 A (24 VDC coil)	
Cavity	ISO D05	
Standard Coil	PD05 23 Watt	

В

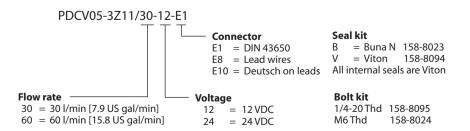
A

P T

Theoretical performance



DIMENSIONS


mm [in]

Cross-sectional view

Schematic

P102 711E

Cartridge Valves Technical Information **Proportional Valves Proportional Directional** PSV10-34-05

OPERATION

This is a non-compensated proportional directional control valve.

SPECIFICATIONS

Specifications	
Rated pressure	250 bar [3600 psi]
Rated flow at 10 bar	22 l/min [6 US gal/min]
[150 psi]	
Weight	0.77 kg [1.70 lb]
Hysteresis	4% maximum
Threshold current	0.5 A (12 VDC coil)
	0.25 A (24 VDC coil)
Maximum control	1.5 A (12 VDC coil)
current	0.8 A (24 VDC coil)
Cavity	SDC10-4
Standard Coil	M16 26 Watt

15 4. 3 -

10

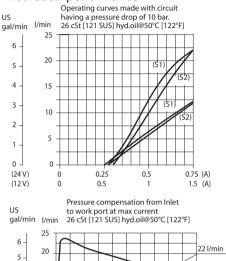
5

0

0

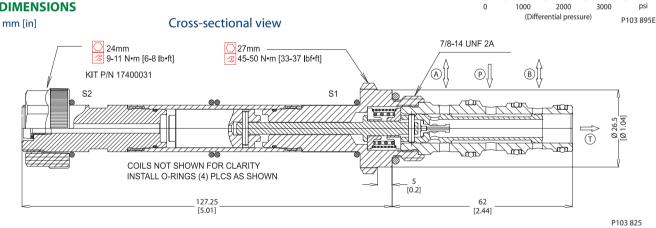
50 100 150

200

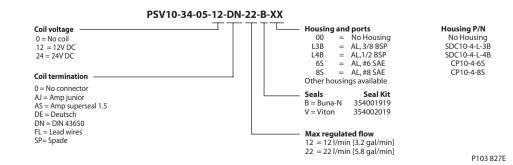

3000

250 Baı

2 -


1

0 -



Schematic (2) (4) S2 S1 (1) (3) P108 287

ORDERING **INFORMATION**

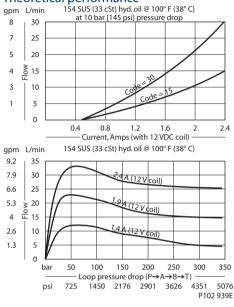
12 l/min

psi

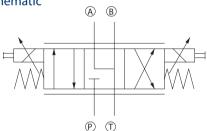
Proportional valves

PSV10-34-05

Cartridge Valves Technical Information Proportional Valves Proportional Directional PDCV03-3Y11

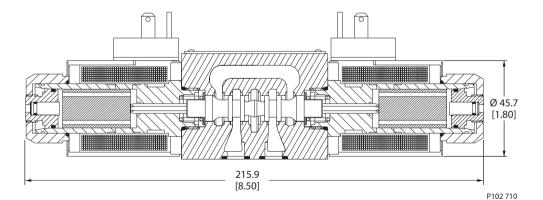

OPERATION

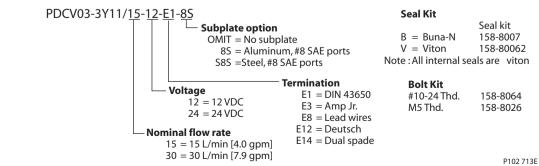
This valve is a proportional directional control.


SPECIFICATIONS

Specifications	
Rated pressure	320 bar [4640 psi]
Rated flow at 10	30 l/min [8 US gal/min]
bar [145 psi]	
Weight	2.40 kg [5.29 lb]
Hysteresis	6% maximum
Threshold current	0.5 A (12 VDC coil)
	0.25 A (24 VDC coil)
Maximum control	2.4 A (12 VDC coil)
current	1.2 A (24 VDC coil)
Cavity	ISO D03
Standard Coil	PD03 40 Watt
Coil nut	158-8005

Theoretical performance


Schematic

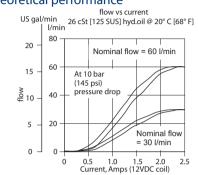


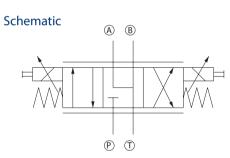
DIMENSIONS

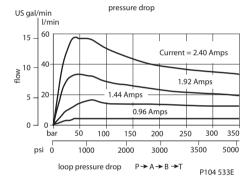
mm [in]

Cross-sectional view

Cartridge Valves Technical Information Proportional Valves Proportional Directional PDCV05-3Y11

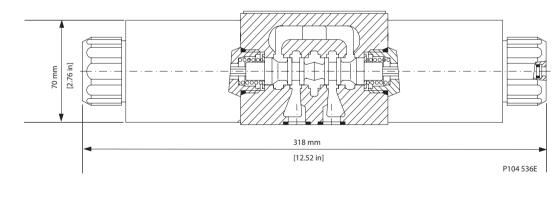

OPERATION

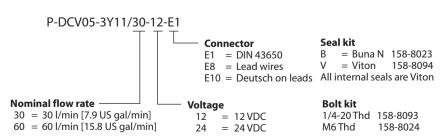

This is a non-compensated proportional directional control valve.


SPECIFICATIONS

Specifications	
Rated pressure	320 bar [4600 psi]
Rated flow at 10 bar	60 l/min [16 US gal/min]
[150 psi]	
Weight	6.60 kg [14.60 lb]
Hysteresis	6% maximum
Threshold current	0.2 A (12 VDC coil)
	0.1 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Cavity	ISO D05
Standard Coil	PD05 23 Watt

Theoretical performance



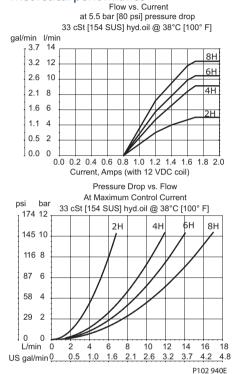


DIMENSIONS

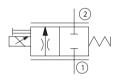
mm [in]

Cross-sectional view

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls CP518-PNC

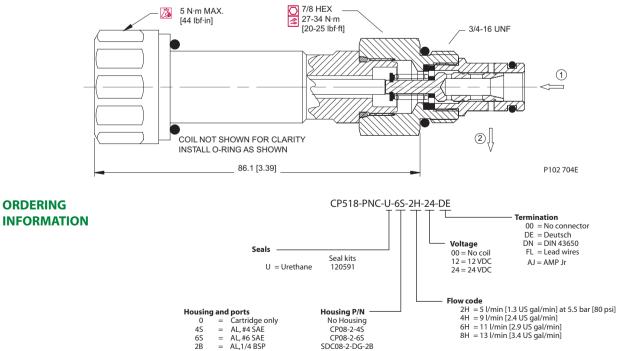

OPERATION

This valve is a non-compensated, normally-closed, proportional flow control.


SPECIFICATIONS

Specifications	
Rated pressure	210 bar [3000 psi]
Rated flow at 6 bar	12 l/min [3 US gal/min]
[80 psi]	
Weight	0.36 kg [0.80 lb]
Hysteresis	10% maximum
Threshold current	0.8 A (12 VDC coil)
	0.4 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Pressure differential	21 bar [300 psi] maximum
Cavity	SDC08-2
Standard Coil	M19P 22 Watt
Coil nut	173802114

Theoretical performance


Schematic

mm [in]

Cross-sectional view

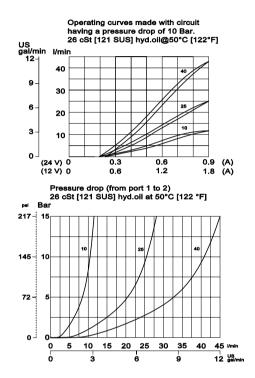
SDC08-2-DG-3B

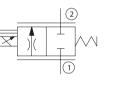
P104 832

ORDERING

AL, 3/8 BSP

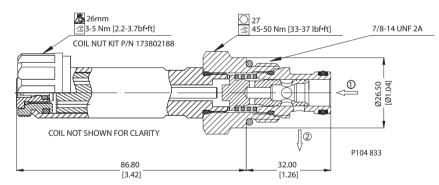
6S 2B = = 3B _


Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSV10-NC


OPERATION This is a normally-closed, direct-acting, spool-type, non-compensated, proportional flow-control. Controlled flow is from port 1 to 2.

SPECIFICATIONS Specifications		
	Rated pressure	260 bar [3770 psi]
	Maximum flow at	PSV10-NC-10:10 l/min [2.64 US gal/min]
	10 bar [145 psi]	PSV10-NC-25:25 l/min [6.6 US gal/min]
	pressure drop	PSV10-NC-40:40 l/min [10.6 US gal/min]
	Leakage	420 cm ³ /min [25.6 in ³ /min] @ at rated
		pressure
	Weight	0.51 kg [1.12 lb]
	Hysteresis	5% maximum
	Threshold current	0.4 A (12 VDC coil)
		0.2 A (24 VDC coil)
	Maximum control	1.8 A (12 VDC coil)
	current	0.9 A (24 VDC coil)
	Pressure	0 bar [0 psi] maximum
	differential	
	Cavity	SDC10-2
	Standard Coil	M19P 22 Watt

Theoretical performance


Schematic

DIMENSIONS

mm [in]

Cross-sectional view

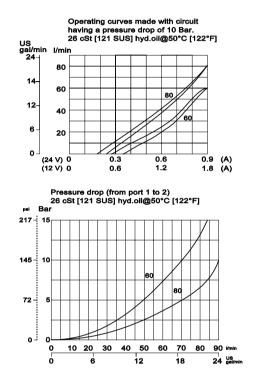
P104 832

ORDERING INFORMATION

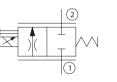
PSV10-NC-XX-12D-DN-B-00 Body and Ports Body Nomenclature No Body Max regulated flow 10 = 10 l/min 25 = 25 l/min 40 = 40 l/min 00 = no housing 6S = AI, #6 SAE 8S = AI, #8 SAE DG3B = AI, 3/8 BSP CP10-2-6S CP10-2-8S SDC10-2-DG3B Coil voltage 00 = No coil DG4B = AI, 1/2 BSP SDC10-2-DG4B Other housing available 12D = 12V DC Seals Seal Kit 24D = 24V DC B = Buna-N seals 35400401 Coil termination V = Viton seals 35400341 00 = No coil FL = Flying Lead DN = ISO 4400 (DIN 43650) DE = Deutsch

Proportional valves PSV10-NC

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSV12-NC

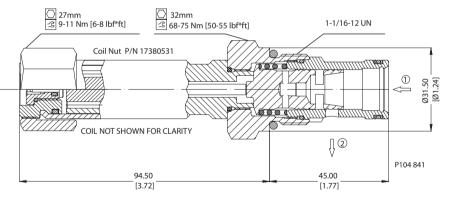


OPERATION

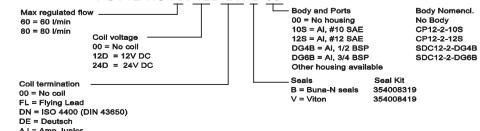

This is a normally-closed, direct-acting, spool-type, non-compensated, proportional flow-control. Controlled flow is from port 1 to 2.

SPECIFICATIONS Specifications		
	Rated pressure	260 bar [3770 psi]
	Maximum flow at 10	PSV12-NC-60:60 l/min [15.85 US gal/min]
	bar [145 psi]	PSV12-NC-80: 80 l/min [21.13 US gal/min]
	Leakage	420 cm ³ /min [25.6 in ³ /min] @ at rated
		pressure
	Weight	0.76 kg [1.68 lb]
	Hysteresis	5% maximum
	Threshold current	0.5 A (12 VDC coil)
		0.25 A (24 VDC coil)
	Maximum control	1.8 A (12 VDC coil)
	current	0.9 A (24 VDC coil)
	Pressure differential	0 bar [0 psi] maximum
	Cavity	SDC12-2
	Standard Coil	D14E(35W) 35 Watt

Theoretical performance


Schematic

mm [in]

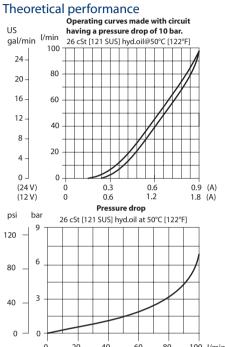

Cross-sectional view

P104 832

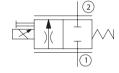
ORDERING INFORMATION

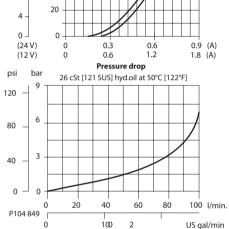
PSV12-NC-XX-12D-DN-B-00

AJ = Amp Junior AS = Amp Superseal


SPECIFICATIONS

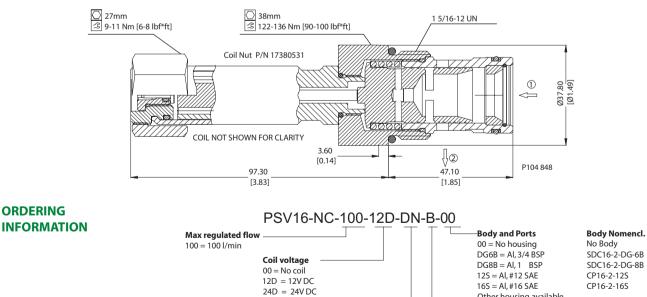
Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSV16-NC




This is a normally-closed, direct-acting, spool-type, non-compensated, proportional flow-**OPERATION** control. Controlled flow is from port 1 to 2.

Specifications Rated pressure 260 bar [3770 psi] Rated flow at 10 100 l/min [26 US gal/min] bar [145 psi] 420 cm³/min [25.6 in³/min] Leakage @ at rated pressure 0.87 kg [1.92 lb] Weight Hysteresis 5% maximum Threshold current 0.5 A (12 VDC coil) 0.25 A (24 VDC coil) **Maximum control** 1.8 A (12 VDC coil) 0.9 A (24 VDC coil) current Pressure 0 bar [0 psi] maximum differential Cavity SDC16-2 **Standard Coil** D14E(35W) 35 Watt

Schematic



DIMENSIONS

ORDERING

mm [in]

Cross-sectional view

P104 832

Other housing available

Seals Seal Kit B = Buna-N seals 354008719 V = Viton 354008819

P104 850

Coil termination

FL = Flying Lead

AS = Amp Superseal

DN = ISO 4400 (DIN 43650)

00 = No coil

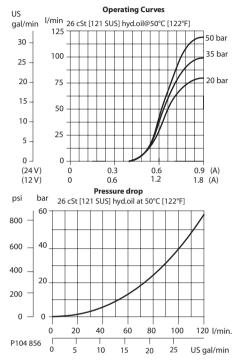
DE = Deutsch AJ = Amp Junior

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSVP10-NCR

OPERATION

This is a non-compensated, normally-closed, pilot-operated, poppet-type, proportional flow-control. Controlled flow is from port 2 to 1.

SPECIFICATIONS

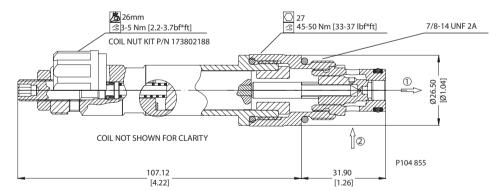

Specifications	
Rated pressure	260 bar [3770 psi]
Rated flow at 10 bar	55 l/min [14 US gal/min]
[150 psi]	
Leakage	6 drops/min @ at rated
	pressure
Weight	0.54 kg [1.19 lb]
Hysteresis	8% maximum
Threshold current	0.8 A (12 VDC coil)
	0.4 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Pressure differential	0 bar [0 psi] maximum
Cavity	SDC10-2
Standard Coil	M19P 22 Watt

(2)

1

P104 854

Theoretical performance



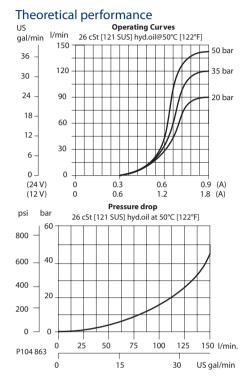
DIMENSIONS

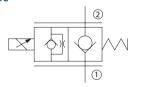
mm [in]

Cross-sectional view

Schematic

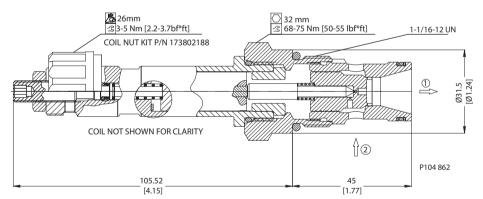
PSVP10-NCR-12D-DN-E	3-00	
Coil voltage	00 = No housing 6S = AI, #6 SAE	Body Nomenclature No Body CP10-2-6S CP10-2-8S
Coil termination 00 = No coil FL = Flying Lead	DG3B = Al, 3/8 BSP DG4B = Al, 1/2 BSP Other housing available	SDC10-2-DG3B SDC10-2-DG4B
DN = ISO 4400 (DIN 43650) DE = Deutsch AJ = AMP Jr	Seals Seal Kit B = Buna-N seals 354004019 V = Viton seals 354003419	P104 857


Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSVP12-NCR


OPERATION This is a non-compensated, normally-closed, pilot-operated, poppet-type, proportional flow-control. Controlled flow is from port 2 to 1.

SPECIFICATIONS

Specifications	
Rated pressure	260 bar [3770 psi]
Rated flow at 10 bar	70 l/min [18 US gal/min]
[150 psi]	
Leakage	6 drops/min @ at rated
	pressure
Weight	0.60 kg [1.32 lb]
Hysteresis	8% maximum
Pressure	0 bar [0 psi] maximum
differential	
Cavity	SDC12-2
Standard Coil	M19P 22 Watt


Schematic

DIMENSIONS

mm [in]

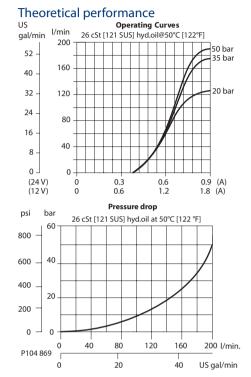
Cross-sectional view

P104 854

PSVP12-NCR-12D-DN-E	B-00	
Coil voltage 00 = No coil 12D = 12V DC 24D = 24V DC	00 = No housing 10S = Al, #10 SAE 12S = Al, #12 SAE	Body Nomencl. No Body CP12-3-10S CP12-3-12S
Coil termination 00 = No coil FL = Flying Lead		CP12-3-4B CP12-3-6B
DN = ISO 4400 (DIN 43650) DE = Deutsch AJ = AMP Jr	Seals Seal Kit B = Buna-N seals 354008319 V = Viton 354008419	P104 864

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSVP16-NCR

OPERATION

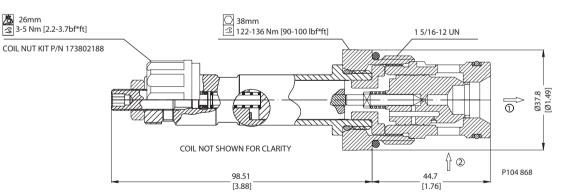

This is a non-compensated, normally-closed, pilot-operated, poppet-type, proportional flow-control. Controlled flow is from port 2 to 1.

SPECIFICATIONS

Specifications		
Rated pressure	260 bar [3770 psi]	
Rated flow at 10 bar	100 l/min [26 US gal/min]	
[150 psi]		
Leakage	6 drops/min @ at rated	
	pressure	
Weight	0.85 kg [1.87 lb]	
Hysteresis	8% maximum	
Pressure differential	0 bar [0 psi] maximum	
Cavity	SDC16-2	
Standard Coil	M19P 22 Watt	

1

2



DIMENSIONS

mm [in]

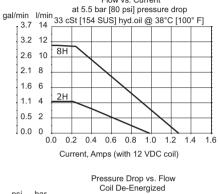
Cross-sectional view

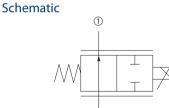
Schematic

P102 660

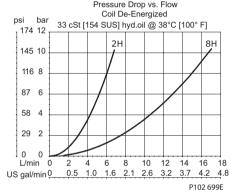
PSVP16-NCR-12D-DN-	B-00	
Coil voltage	00 = No housing N DG6B = Al, 3/4 BSP S	Body Nomencl. No Body DC16-2-DG-6B DC16-2-DG-8B
Coil termination 00 = No coil FL = Flying Lead	12S = AI, #12 SAE	EP16-2-125 EP16-2-165
DN = ISO 4400 (DIN 43650) DE = Deutsch AJ = AMP Jr	Seals Seal Kit B = Buna-N seals 354008719 V = Viton 354008819	P104 870

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls CP518-PNO

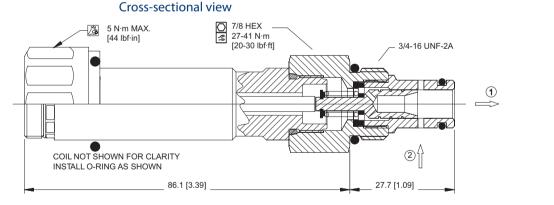

OPERATION


This valve is a non-compensated, normally-open, proportional flow control.

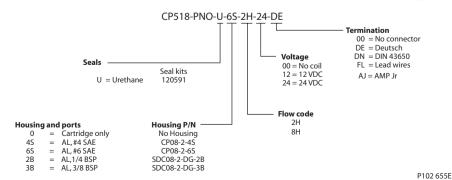
SPECIFICATIONS


Specifications	
Rated pressure	210 bar [3000 psi]
Rated flow at 6 bar	12 l/min [3 US gal/min]
[80 psi]	
Weight	0.36 kg [0.80 lb]
Hysteresis	4% maximum
Threshold current	0.2 A (12 VDC coil)
	0.1 A (24 VDC coil)
Maximum control	1.2 A (12 VDC coil)
current	0.6 A (24 VDC coil)
Pressure differential	21 bar [300 psi] maximum
Cavity	SDC08-2
Standard Coil	M19P 22 Watt
Coil nut	173802114

Theoretical performance Flow vs. Current



2


DIMENSIONS

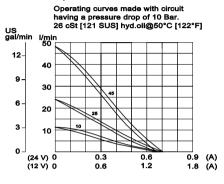
mm [in]

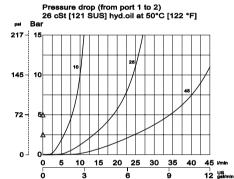
P102 703E

P102 660

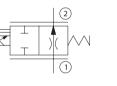
11.25

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSV10-NO

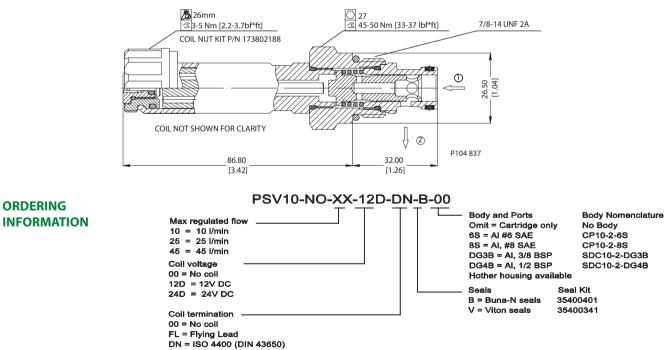



OPERATION

This is a normally-open, direct-acting, spool-type, non-compensated, proportional flowcontrol. Controlled flow is from port 1 to 2.


SPECIFICATIONS	Specifications	
	Rated pressure	260 bar [3770 psi]
	Maximum flow at	PSV10-NO-10: 10 l/min [2.64 US gal/min]
	10 bar [145 psi]	PSV10-NO-25: 25 l/min [6.6 US gal/min]
		PSV10-NO-40: 40 l/min [10.6 US gal/min]
	Leakage	420 cm ³ /min [25.6 in ³ /min] @ at rated
		pressure
	Weight	0.51 kg [1.12 lb]
	Hysteresis	5% maximum
	Threshold current	0.1 A (12 VDC coil)
		0.05 A (24 VDC coil)
	Maximum control	1.8 A (12 VDC coil)
	current	0.9 A (24 VDC coil)
	Pressure	0 bar [0 psi] maximum
	differential	
	Cavity	SDC10-2
	Standard Coil	M19P 22 Watt

Theoretical performance


Schematic

DIMENSIONS

mm [in]

Cross-sectional view

P104 836

DE = Deutsch

ORDERING

SPECIFICATIONS

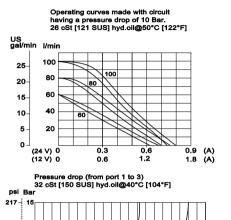
Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSV12-NO

This is a normally-open, direct-acting, spool-type, non-compensated, proportional flow-**OPERATION** control. Controlled flow is from port 1 to 2.

Specifications	
Rated pressure	260 bar [3770 psi]
Maximum flow at	PSV12-NO-60:60 l/min [15.85 US gal/min]
10 bar [145 psi]	PSV12-NO-80:80 l/min [31.13 US gal/min]
	PSV12-NO-100: 100 l/min [26.41 US gal/min]
Leakage	420 cm³/min [25.6 in³/min] @ at rated
	pressure
Weight	0.76 kg [1.68 lb]
Hysteresis	5% maximum
Threshold current	0.3 A (12 VDC coil)
	0.15 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Pressure differential	0 bar [0 psi] maximum
Cavity	SDC12-2
Standard Coil	D14E(35W) 35 Watt

Theoretical performance

145


72

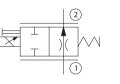
0

0

'n

Å

10 20 30 40 50 60 70 80 90 100 **

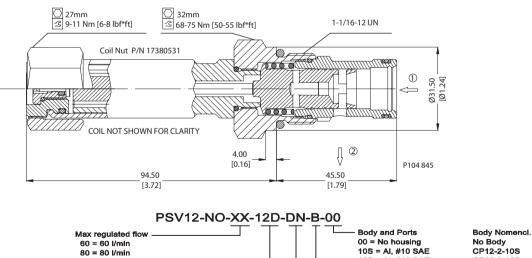

18

12

US gel/mi

24

Schematic


DIMENSIONS

ORDERING

INFORMATION

mm [in]

Cross-sectional view

P104 836

100 = 100 l/min Coil voltage 00 = No coil

12D = 12V DC 24D = 24V DC

Proportional valves PSV12-NO

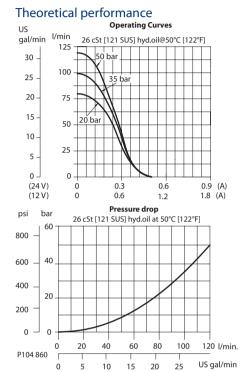
FL = Flying Lead DN = ISO 4400 (DIN 43650)

Coil termination

00 = No coil

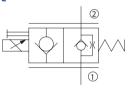
DE = Deutsch AJ = Amp Junior AS = Amp superseal

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSVP10-NOR

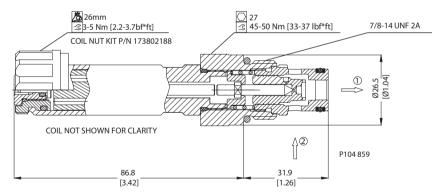


OPERATION

This is a non-compensated, normally-open, pilot-operated, poppet-type, proportional flow-control. Controlled flow is from port 2 to 1.


SPECIFICATIONS

Rated pressure	260 bar [3770 psi]
Rated flow at 10 bar	45 l/min [12 US gal/min]
[2600150 psi]	
Leakage	6 drops/min @ at rated
	pressure
Weight	0.54 kg [1.19 lb]
Hysteresis	8% maximum
Pressure	0 bar [0 psi] maximum
differential	
Cavity	SDC10-2
Standard Coil	M19P 22 Watt


Specifications

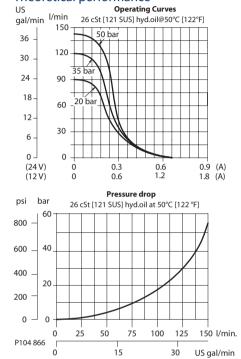
mm [in]

Cross-sectional view

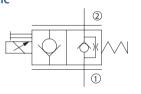
P104 858

PSVP10-NOR-12D-DN	N-B-00	
Coil voltage 00 = No coil 12D = 12V DC 24D = 24V DC	Body and Ports 00 = No housing 6S = Al, #6 SAE 8S = Al, #8 SAE	Body Nomenclature No Body CP10-2-65 CP10-2-85
Coil termination 00 = No coil FL = Flying Lead	DG3B = Al, 3/8 BSP DG4B = Al, 1/2 BSP Other housing available	SDC10-2-DG3B SDC10-2-DG4B
DN = ISO 4400 (DIN 43650) DE = Deutsch AJ = AMP Jr	Seals Seal Kit B = Buna-N seals 3540040 V = Viton seals 3540034	1101001

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSVP12-NOR

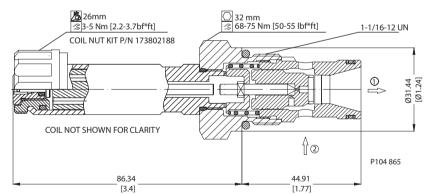


OPERATION This is a non-compensated, normally-open, pilot-operated, poppet-type, proportional flow-control. Controlled flow is from port 2 to 1.


SPECIFICATIONS

Specifications	
Rated pressure	260 bar [3770 psi]
Rated flow at 10 bar	70 l/min [18 US gal/min]
[150 psi]	
Leakage	6 drops/min @ at rated
	pressure
Weight	0.60 kg [1.32 lb]
Hysteresis	8% maximum
Pressure differential	0 bar [0 psi] maximum
Cavity	SDC12-2
Standard Coil	M19P 22 Watt

Theoretical performance


Schematic

DIMENSIONS

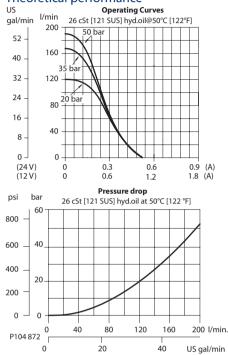
mm [in]

Cross-sectional view

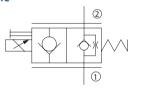
P104 858

PSVP12-NOR-12D-DN-	-B-00	
Coil voltage 00 = No coil 12D = 12V DC 24D = 24V DC	00 = No housing No B 10S = Al, #10 SAE CP12	y Nomencl. Body 2-3-10S 2-3-12S
Coil termination 00 = No coil FL = Flying Lead	4B = AI, 1/2 BSP CP12	2-3-4B 2-3-6B
DN = ISO 4400 (DIN 43650) DE = Deutsch AJ = AMP Jr	Seals Seal Kit B = Buna-N seals 354008319 V = Viton 354008419	P104 867

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PSVP16-NOR

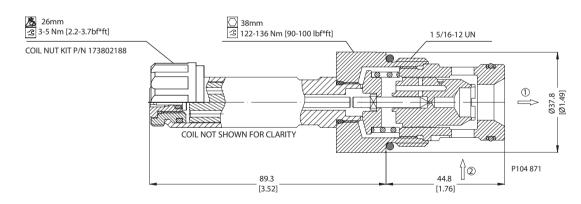

OPERATION

This is a non-compensated, normally-open, pilot-operated, poppet-type, proportional flow-control. Controlled flow is from port 2 to 1.


SPECIFICATIONS

Specifications		
Rated pressure	260 bar [3770 psi]	
Rated flow at 10 bar	80 l/min [21 US gal/min]	
[150 psi]		
Leakage	6 drops/min @ at rated	
	pressure	
Weight	0.85 kg [1.87 lb]	
Hysteresis	8% maximum	
Pressure	0 bar [0 psi] maximum	
differential		
Cavity	SDC16-2	
Standard Coil	M19P 22 Watt	

Theoretical performance


Schematic

mm [in]

Cross-sectional view

P104 858

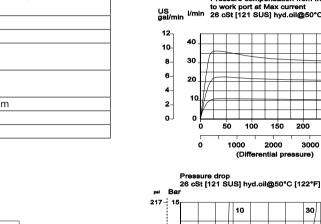
PSVP16-NOR-12D-DN-B-00		
Coil voltage	00 = No housing DG6B = Al, 3/4 BSP	Body Nomencl. No Body SDC16-2-DG-6B SDC16-2-DG-8B
Coil termination 00 = No coil FL = Flying Lead	,	CP16-2-12S CP16-2-16S
DN = 150 4400 (DIN 43650) DE = Deutsch AJ = AMP Jr	Seals Seal Kit B = Buna-N seals 354008719 V = Viton 354008819	P104 873

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PFC10-RC

250 Ba

nsi

3000

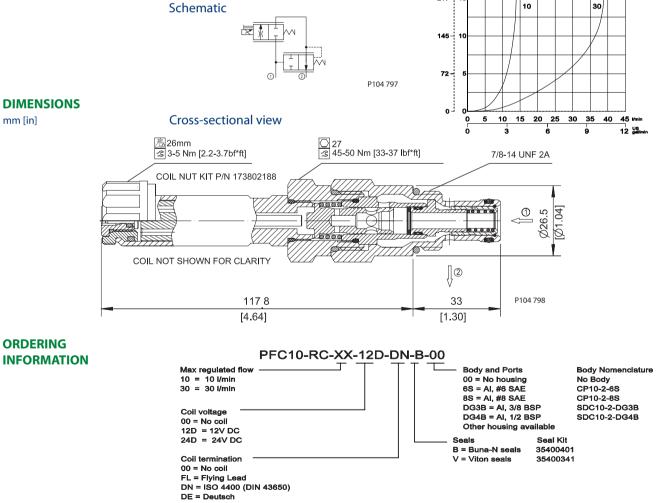

30

ure)

150 200

Operating curves made with circuit having a pressure drop of 50 Bar. 26 cSt [121 SUS] hyd.oil@50°C [122°F]

US gal/min ¹²1 40 9 30 6 20 з 10 0 (24 V) 0 (12 V) 0 (A) (A) 0.3 0.6 0.9 0.6 1.2 1.8 Pressure compensation from Inlet to work port at Max current 26 cSt [121 SUS] hyd.oil@50°C [122°F] US gal/min ^{I/min} 12 40 10 30 8 6 20 4 10 2

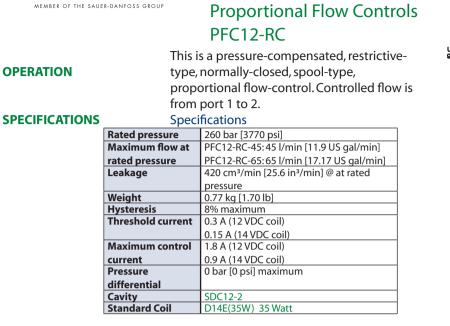


OPERATION

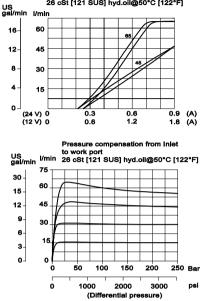
This is a pressure-compensated, restrictive-type, normally-closed, spool-type, proportional flowcontrol. Controlled flow is from port 1 to 2.

SPECIFICATIONS Pated prossure 260 bar [2770 pci]

260 bar [3770 psi]
PFC10-RC-10: 10 l/min [2.64 US gal/min]
PFC10-RC-30: 30 l/min [7.9 US gal/min]
420 cm ³ /min [25.6 in ³ /min] @ at rated
pressure
0.65 kg [1.43 lb]
8% maximum
0.5 A (12 VDC coil)
0.25 A (24 VDC coil)
1.8 A (12 VDC coil)
0.9 A (24 VDC coil)
0 bar [0 psi] maximum
SDC10-2
M19P 22 Watt

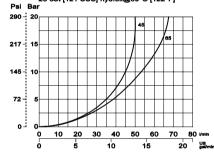


Proportional valves PFC10-RC



Cartridge Valves Technical Information

COMPLIANT

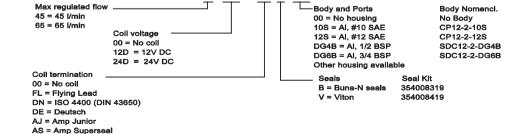


Proportional Valves

Operating curves made with circuit having a pressure drop of 50 Bar. 26 cSt [121 SUS] hyd.oil@50°C [122°F]

Pressure drop 26 cSt [121 SUS] hyd.oil@50°C [122°F]

Schematic



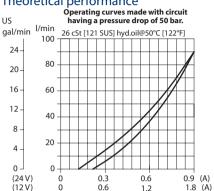
DIMENSIONS mm [in]

Cross-sectional view 32mm
 368-75 Nm [50-55 lbf*ft] 1-1/16-12 UN Coil Nut P/N 17380531 <u>Nege</u>éé [Ø1.24] 1 S V Ø31. \sim 79 6600 COIL NOT SHOWN FOR CLARITY []@ Δ [0.16] P104 812 94.5 46.2 [3.72] [1.82]

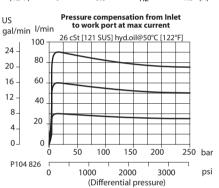
ORDERING INFORMATION

PFC12-RC-XX-12D-DN-B-00

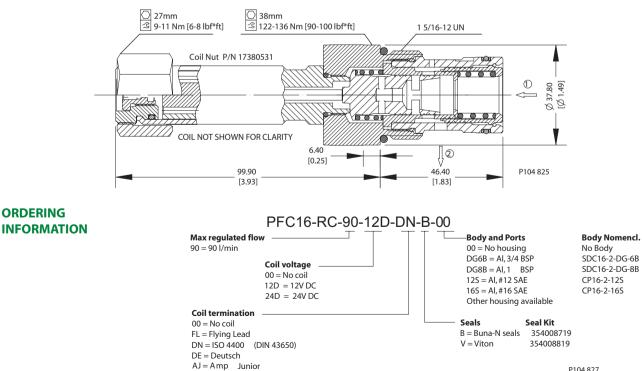
SPECIFICATIONS


Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PFC16-RC

This is a pressure-compensated, restrictive-type, normally-closed, spool-type, **OPERATION** proportional flow control. Controlled flow is from port 1 to 2.


Specifications Rated pressure 260 bar [3770 psi] Rated flow at 260 90 l/min [24 US gal/min] bar [3771 psi] 420 cm³/min [25.6 in³/min] Leakage @ at rated pressure Weight 0.91 kg [2.01 lb] 8% maximum Hysteresis Threshold current 0.4 A (12 VDC coil) 0.2 A (24 VDC coil) Maximum control 1.8 A (12 VDC coil) 0.9 A (24 VDC coil) current Pressure differential 0 bar [0 psi] maximum Cavity SDC16-2 Standard Coil D14E(35W) 35 Watt

Schematic



DIMENSIONS

mm [in]

Cross-sectional view

P104 797

P104 827

520L0588 • Rev DB • November 2010

AS = Amp Superseal

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PFC10-RO

OPERATION

SPECIFICATIONS

This is a pressure-compensated, restrictive-type, normally-open, spool-type, proportional flow-control. Controlled flow is from port 1 to 2.

0-

5

50

100

150

20

200

3000

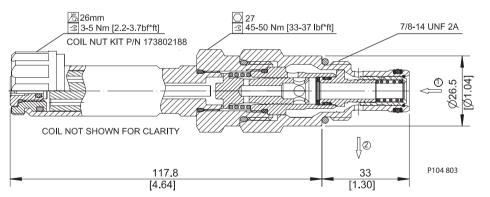
250 Bai

nel

Specifications	
Rated pressure	260 bar [3770 psi]
maximum flow at	PFC10-RO-10: 10 l/min [2.64 US gal/min]
rated pressure	PFC10-RO-30: 30 l/min [7.9 US gal/min]
Leakage	420 cm ³ /min [25.6 in ³ /min] @ at rated
	pressure
Weight	0.65 kg [1.43 lb]
Hysteresis	8% maximum
Threshold current	0.2 A (12 VDC coil)
	0.1 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Pressure	0 bar [0 psi] maximum
differential	
Cavity	SDC10-2
Standard Coil	M19P 22 Watt

Operating curves made with circuit having a pressure drop of 50 Bar. 32 cSt [150 SUS] hyd.oil@40°C [104°F] US gal/min 12-| 1/mir 40 9-30 6 20 3-10 0 0.3 0.9 (A) 1.8 (A) (24 V) 0 (12 V) 0 0.6 1.2 Pressure compensation from Inlet to work port 32 cSt [150 SUS] hyd.oll@40°C [104°F] US and/ 3 2 1

Theoretical performance


Schematic

DIMENSIONS

mm [in]

Cross-sectional view

ORDERING INFORMATION

PFC10-RO-30-12D-DN-B-00

Max regulated flow 10 = 10 l/min 30 = 30 l/min	Body and Ports Body Nomenclature 00 = No housing No Body 6S = AI, #6 SAE CP10-2-6S 8S = AI, #8 SAE CP10-2-8S
Coil voltage 00 = No coil 12D = 12V DC 24D = 24V DC	DG3B = AI, 3/8 BSP SDC10-2-DG3B DG4B = AI, 1/2 BSP SDC10-2-DG4B Other housing available Seals Seal Kit
Coil termination 00 = No coil FL = Flying Lead DN = ISO 4400 (DIN 43650) DE = Deutsch AJ = AMP Jr	B = Buna-N seals 354004019 P104 805 V = Viton seals 354003419

Proportional valves PFC10-RO

11.34

mm [in]

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PFC12-RO US gal/mir

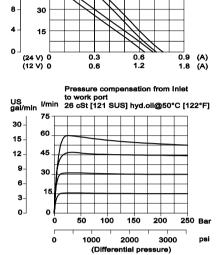
Operating curves made with circuit having a pressure drop of 50 Bar. 26 cSt [121 SUS] hyd.oil@50°C [122°F]

l/mir

60

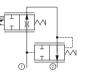
45

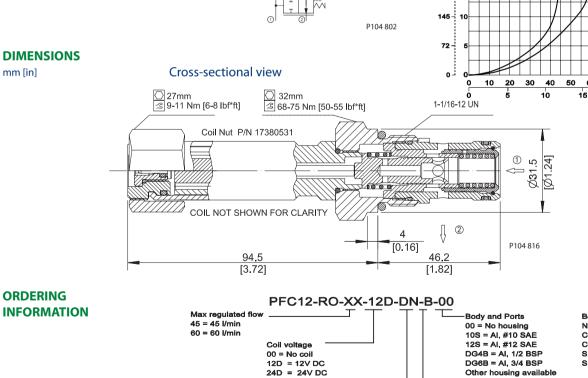
16


12

Psi Ba 200 20

217 -


This is a pressure-compensated, restrictivetype, normally-open, spool-type, proportional **OPERATION** flow-control. Controlled flow is from port 1 to 2.


SPECIFICATIONS	DNS Specifications		
	Rated pressure	260 bar [3770 psi]	
	Maximum flow at	PFC12-RO-45:45 l/min [11.9 US gal/min]	
	rated pressure	PFC12-RO-60:60 l/min [15.9 US gal/min]	
	Leakage	420 cm ³ /min [25.6 in ³ /min] @ at rated	
		pressure	
	Weight	0.77 kg [1.70 lb]	
	Hysteresis	8% maximum	
	Threshold current	0.42 A (12 VDC coil)	
		0.21 A (24 VDC coil)	
	Maximum control	1.8 A (12 VDC coil)	
	current	0.9 A (24 VDC coil)	
	Pressure differential	0 bar [0 psi] maximum	
	Cavity	SDC12-2	
	Standard Coil	D14E(35W) 35 Watt	

Pressure drop 26 cSt [121 SUS] hyd.oil@50°C [122°F]

Schematic

Body Nomencl. No Body CP12-2-10S CP12-2-12S SDC12-2-DG4B SDC12-2-DG6B

60 70 80 Vmi

20

Seals Seal Kit B = Buna-N seals 354008319 V = Viton 354008419

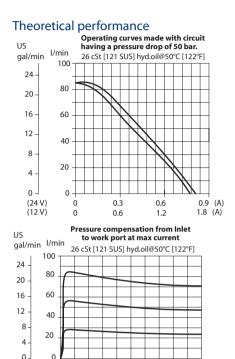
Coil termination

FL = Flying Lead DN = ISO 4400 (DIN 43650)

DE = Deutsch AJ = Amp Junior AS = Amp Superseal

00 = No coil

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PFC16-RO



OPERATION

This is a pressure-compensated, restrictive-type, normally-open, spool-type, proportional flow-control. Controlled flow is from port 1 to 2.

SPECIFICATIONS

Specifications	
Rated pressure	260 bar [3770 psi]
Rated flow at 260	85 l/min [22 US gal/min]
bar [3771 psi]	
Leakage	420 cm ³ /min [25.6 in ³ /min]
	@ at rated pressure
Weight	0.91 kg [2.01 lb]
Hysteresis	8% maximum
Threshold current	0.2 A (12 VDC coil)
	0.1 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Pressure	0 bar [0 psi] maximum
differential	
Cavity	SDC16-2
Standard Coil	D14E(35W) 35 Watt

100

150

2000

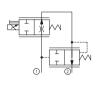
(Differential pressure)

50

1000

P104 830 0

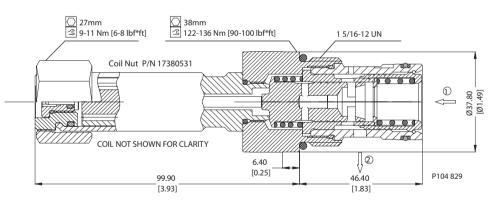
200

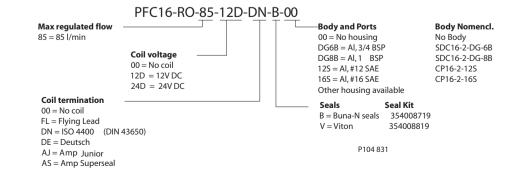

3000

250

bar

psi

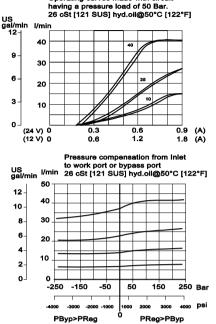

Schematic



mm [in]

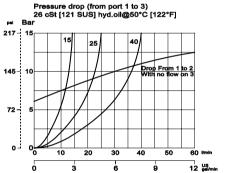
Cross-sectional view

P104 802

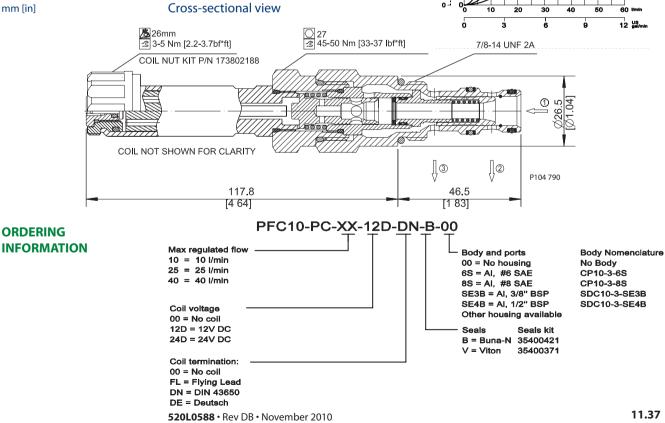

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls Operating curves made with circuit PFC10-PC

This is a pressure-compensated, prioritytype, normally-closed, spool-type, **OPERATION** proportional flow-control. Controlled flow is from port 1 to 3, port 2 is bypass.

SPECIFICATIONS


260 bar [3770 psi]
PFC10-PC-10:10 l/min [2.64 US gal/min]
PFC10-PC-25:25 l/min [6.6 US gal/min]
PFC10-PC-40:40 l/min [10.6 US gal/min]
420 cm ³ /min [25.6 in ³ /min] @ at rated
pressure
0.62 kg [1.37 lb]
8% maximum
0.36 A (12 VDC coil)
0.18 A (24 VDC coil)
1.8 A (12 VDC coil)
0.9 A (24 VDC coil)
0 bar [0 psi] maximum
SDC10-3
M19P 22 Watt

Schematic



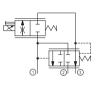
P104 789

DIMENSIONS

mm [in]

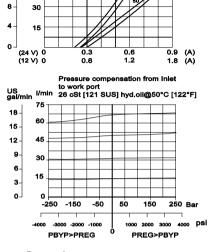
Cartridge Valves Technical Information

COMPLIANT


Proportional Valves Proportional Flow Controls PFC12-PC

OPERATIONThis is a pressure-compensated, priority-
type, normally-closed, spool-type,
proportional flow-control. Controlled flow is
from port 1 to 3, port 2 is bypass.

SPECIFICATIONS


Rated pressure	260 bar [3770 psi]	
Maximum flow at	PFC12-PC-50:50 l/min [13.21 US gal/min]	
rated pressure	PFC12-PC-65:65 l/min [17.17 US gal/min]	
Leakage	420 cm ³ /min [25.6 in ³ /min] @ at rated	
	pressure	
Weight	0.81 kg [1.79 lb]	
Hysteresis	8% maximum	
Threshold current	0.5 A (12 VDC coil)	
	0.25 A (24 VDC coil)	
Maximum control	1.8 A (12 VDC coil)	
current	0.9 A (24 VDC coil)	
Pressure	0 bar [0 psi] maximum	
differential		
Cavity	SDC12-3	
Standard Coil	D14E(35W) 35 Watt	

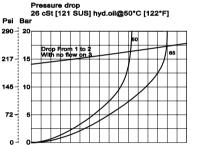
Schematic

Cross-sectional view

P104 789

Operating curves made with circuit having a pressure load of 50 Bar. 26 cSt [121 SUS] hyd.oil@50°C [122°F]

US gal/min


16

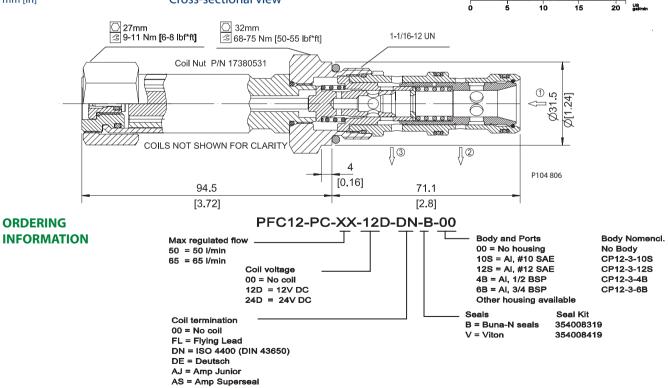
12

l/m

60

45

40 50

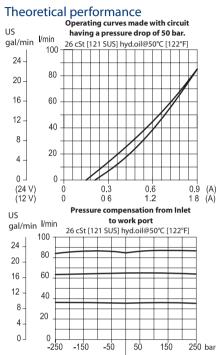

60 70

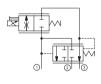
80 v

10 20 30

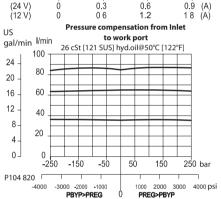
DIMENSIONS

mm [in]


Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PFC16-PC


This is a pressure-compensated, priority-type, normally-closed, spool-type, proportional **OPERATION** flow-control. Controlled flow is from port 1 to 3, port 2 is bypass.

SPECIFICATIONS


Specifications	
Rated pressure	260 bar [3770 psi]
Rated flow at 260	85 l/min [22 US gal/min]
bar [3771 psi]	
Leakage	420 cm ³ /min [25.6 in ³ /min]
	@ at rated pressure
Weight	0.97 kg [2.14 lb]
Hysteresis	8% maximum
Threshold current	0.4 A (12 VDC coil)
	0.2 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Pressure differential	0 bar [0 psi] maximum
Cavity	SDC16-3
Standard Coil	D14E(35W) 35 Watt

Schematic

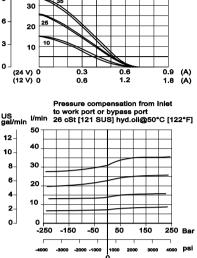

P104 789

DIMENSIONS

mm [in]

Cross-sectional view

Cartridge Valves Technical Information

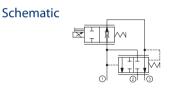

Proportional Valves Proportional Flow Controls PFC10-PO

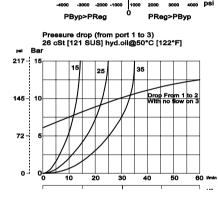
This is a pressure-compensated, priority-type, normally-open, spool-type, proportional flow-control. Controlled flow is from port 1 to 3, port 2 is bypass.

SPECIFICATIONS

OPERATION

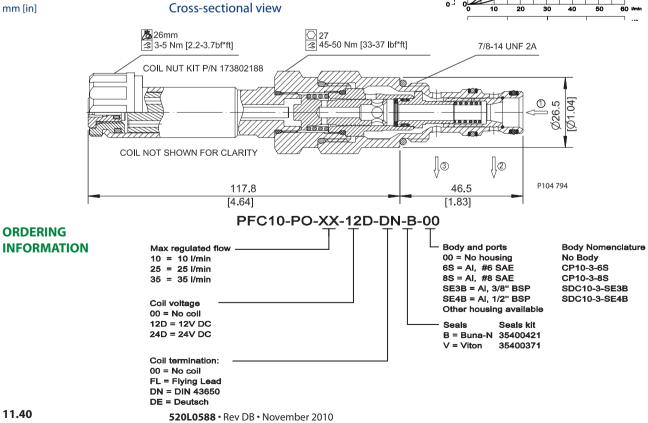
Rated pressure	260 bar [3770 psi]
Maximum flow at	PFC10-PO-10: 10 l/min [2.64 US gal/min]
rated pressure	PFC10-PO-25: 25 l/min [6.6 US gal/min]
	PFC10-PO-35: 35 l/min [9.25 US gal/min]
Leakage	420 cm ³ /min [25.6 in ³ /min] @ at rated pressure
Weight including	0.72 kg [1.59 lb]
coil	
Hysteresis	8% maximum
Threshold current	0.1 A (12 VDC coil)
	0.05 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Pressure	0 bar [0 psi] maximum
differential	
Cavity	SDC10-3
Standard Coil	M19P 22 Watt


Operating curves made with circuit


US gal/min 12-|

9

40

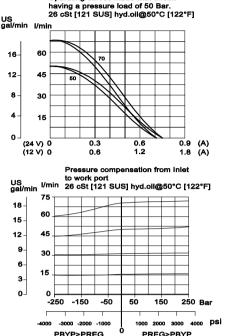

having a pressure load of 50 Bar. 26 cSt [121 SUS] hyd.oil@50°C [122°F]

DIMENSIONS

mm [in]

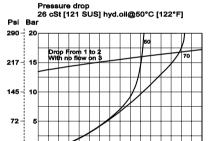
P104 793

Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls



PFC12-PO This is a pressure-compensated, prioritytype, normally-open, spool-type, proportional flow-control. Controlled flow is from port 1 to 3, port 2 is bypass.

SPECIFICATIONS


OPERATION

Rated pressure	260 bar [3770 psi]			
maximum flow at	PFC12-PO-50: 50 l/min [13.21 US gal/min]			
rated pressure	PFC12-PO-70: 70 l/min [8.5 US gal/min]			
Leakage	420 cm ³ /min [25.6 in ³ /min] @ at rated			
	pressure			
Weight	0.81 kg [1.79 lb]			
Hysteresis	8% maximum			
Threshold current	0.2 A (12 VDC coil)			
	0.1 A (24 VDC coil)			
Maximum control	1.8 A (12 VDC coil)			
current	0.9 A (24 VDC coil)			
Pressure differential	0 bar [0 psi] maximum			
Cavity	SDC12-3			
Standard Coil	D14E(35W) 35 Watt			

Operating curves made with circuit

Schematic

DIMENSIONS

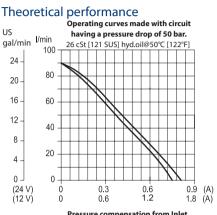
mm [in] Cross-sectional view 0-40 50 10 20 30 60 70 80 32mm US gal/mi 1-1/16-12 UN 10 20 3 68-75 Nm [50-55 lbf*ft] ò 15 Coil Nut P/N 17380531 78287 7/0000 0000 <u>م</u> (1) 24] 4 Ø31 THE STATE 21 COILS NOT SHOWN FOR CLARITY ŢØ [] (3 Δ [0.16] P104 809 94.5 71.1 [3.72] [2.8]ORDERING PFC12-PO-XX-12D-DN-B-00 **INFORMATION** Max regulated flow Body and Ports Body Nomencl. $50 = 50 \, \text{l/min}$ 00 = No housing No Body 70 = 70 l/min 10S = AI, #10 SAE CP12-3-10S Coil voltage 12S = AI, #12 SAE CP12-3-12S 00 = No coil 4B = AI, 1/2 BSP CP12-3-4B 12D = 12V DC 6B = AI, 3/4 BSP CP12-3-6B 24D = 24V DC Other housing available Seals Seal Kit **Coil termination** B = Buna-N seals 354008319 00 = No coil V = Viton 354008419 FL = Flying Lead DN = ISO 4400 (DIN 43650) DE = Deutsch AJ = Amp Junior

P104 793

520L0588 • Rev DB • November 2010

AS = Amp Superseal

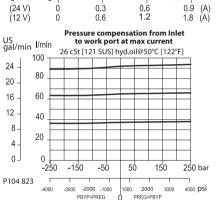
Cartridge Valves Technical Information Proportional Valves Proportional Flow Controls PFC16-PO


OPERATION

This is a pressure-compensated, priority-type, normally-open, spool-type, proportional flow-control. Controlled flow is from port 1 to 3, port 2 is bypass.

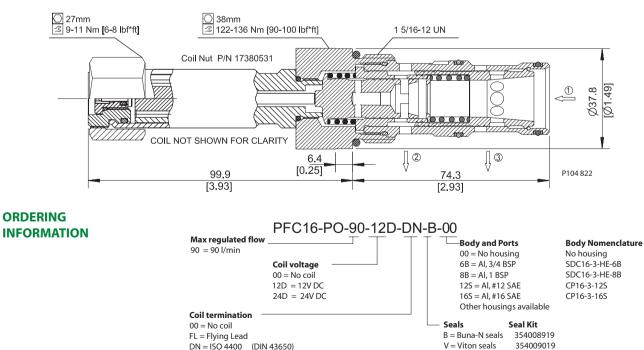
P104 793

SPECIFICATIONS


Rated pressure	260 bar [3770 psi]
Rated flow at 260	90 l/min [24 US gal/min]
bar [3771 psi]	
Leakage	420 cm³/min [25.6 in³/min]
	@ at rated pressure
Weight	0.97 kg [2.14 lb]
Hysteresis	8% maximum
Threshold current	0.1 A (12 VDC coil)
	0.05 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Pressure	0 bar [0 psi] maximum
differential	
Cavity	SDC16-3
Standard Coil	D14E(35W) 35 Watt

Schematic

Specifications



P104 824

DIMENSIONS

mm [in]

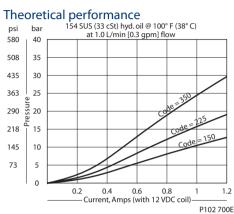
Cross-sectional view

520L0588 • Rev DB • November 2010

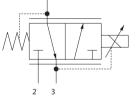
DE = Deutsch A J = Amp Junior

AS = Amp Superseal

Cartridge Valves Technical Information Proportional Valves Proportional Pressure Reducing CP558-24



OPERATION


This valve is a direct acting, proportional, pressure reducing/relieving valve.

SPECIFICATIONS

Specifications	
Rated pressure	34 bar [500 psi]
Rated flow at 7 bar	4 l/min [1 US gal/min]
[100 psi]	
Weight	0.27 kg [0.60 lb]
Hysteresis	10% maximum
Threshold current	0.1 A (12 VDC coil)
	0.05 A (24 VDC coil)
Maximum control	1 A (12 VDC coil)
current	0.5 A (24 VDC coil)
Cavity	SDC08-3
Standard Coil	D08 16 Watt
Coil nut	322399

Schematic

DIMENSIONS

ORDERING

mm [in]

Cross-sectional view

= No Housing

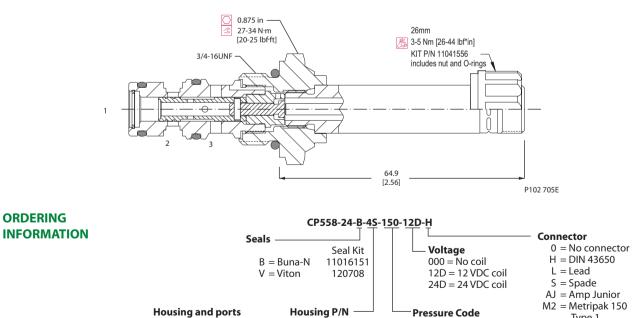
= AL,1/4 BSP

= AL, 3/8 BSP

= AL, #4 SAE

= AL, #6 SAE

520L0588 • Rev DB • November 2010


00

SE2B

SE3B

4S

65

No Housing

SDC08-3-SE-2B

SDC08-3-SE-3B

CP08-3-4S

CP08-3-6S

P102 433E

Type 1

DE = Deutsch

Pressure Code

150 = 10.3 bar [150 psi]

225 = 15.5 bar [225 psi]

350 = 24.1 bar [350 psi]

Specifications

Rated pressure

[100 psi]

Weight

Rated flow at 7 bar

Cartridge Valves Technical Information **Proportional Valves Proportional Pressure Reducing** XRP 044

50 bar [700 psi]

0.34 kg [0.75 lb]

25 l/min [7 US gal/min]

OPERATION

This is a pilot-operated, proportional pressure reducing/relieving valve.

Theoretical performance

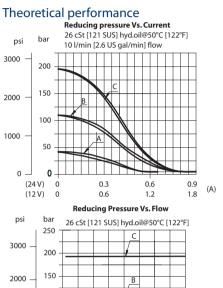
psi Bar

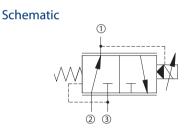
Operating envelope 26 cSt [121 SUS] hyd.oil at 50לC [122 ל]

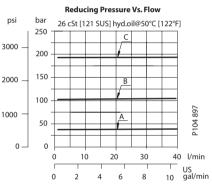
SPECIFICATIONS

	Weight 0.34 kg [0.75 lb]	30
	Hysteresis 6% maximum	400 -
	Threshold current 0.15 A (12 VDC coil)	25
	0.08 A (24 VDC coil)	300 - 20
	Maximum control 1.2 A (12 VDC coil)	
	current 0.6 A (24 VDC coil)	
	Cavity SDC10-4	100 - 10
	Standard Coil M13 20 Watt	5
	Schematic	$\int_{0}^{1} \frac{1}{2} $
DIMENSIONS	2 ④ P102 943	
mm [in]	Cross-sectional view	
titti [iii]	Closs-sectional view	
20 mm 4-6 Nm [35-53 lbf*in] Coil Nut Kit P/N 173800588	∑ 25 mm	14 UNF - 2B
	<u>57.7</u> [2.27]	[2.49]
		P103 678
	XRP 044 \ 25 [*] - F - 24D -DE - 00 V	
ORDERING	Setting Range T T T	
	20 = 0 - 20 bar [0 - 290 psi]	Seals Seal kit
INFORMATION	25 = 0 - 25 bar [0 - 360 psi]	V = Viton Consult factory
		Omit = Buna-N Consult factory
	Inlet filter	ising and ports Housing P/N
	F = 300 µm filter Hou Omit = No filter 00	
	Voltage	
	0 110 001	
	12D = 12VDC coil 65	
	24D = 24VDC coil 85	
	Termination Oth	er housings available
	00 = No connetor $DN = DIN 43650 (ISO 4400)$	
		* other pressure ranges P103 733E
	AJ = AMP junior $DN1 = "DN" w/Connector$	available consult factory
	AMS = AMP Superseal 15 $FL600$ = Lead wires	available, consult factory
	DE = Deutsch SP = Spade	
11.44		
11.77	520L0588 • Rev DB • November 2010	

Cartridge Valves Technical Information Proportional Valves Proportional Pressure Reducing PPR10-PAC

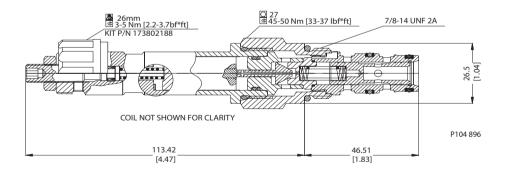



OPERATION


This is a pilot-operated, proportional pressure-reducing/relieving valve (Normally closed).

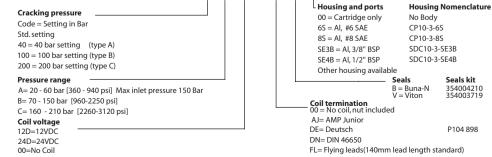
SPECIFICATIONS

Specifications	
Rated pressure	250 bar [3625 psi]
Rated flow at 7 bar	18 l/min [5 US gal/min]
[100 psi]	
Weight	0.62 kg [1.37 lb]
Hysteresis	10% maximum
Threshold current	0 A (12 VDC coil)
	0 A (24 VDC coil)
Maximum control	1.4 A (12 VDC coil)
current	0.7 A (24 VDC coil)
Pressure differential	0 bar [0 psi] maximum
Cavity	SDC10-3
Standard Coil	M19P 22 Watt



DIMENSIONS

mm [in]

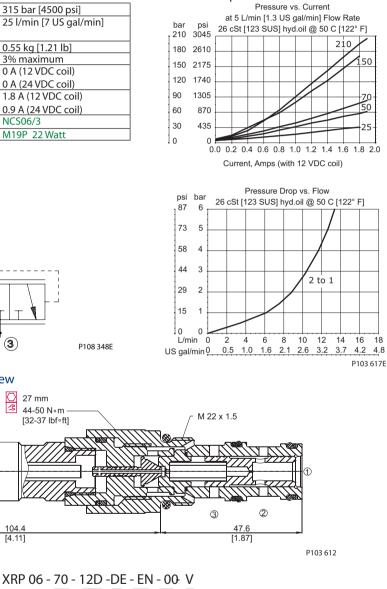

Cross-sectional view

ORDERING INFORMATION

PPR10-PAC-40-A-12D-DN-B-00

P104 895

Cartridge Valves Technical Information Proportional Valves Proportional Pressure Reducing XRP 06


OPERATION

This is a pilot-operated, proportional pressure reducing/relieving valve.

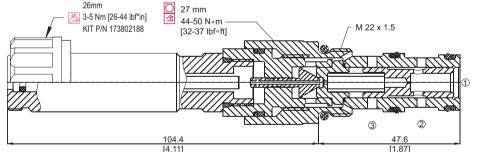
SPECIFICATIONS

Specifications			
Rated pressure 315 bar [4500 psi]			
Rated flow at 7 bar	25 l/min [7 US gal/min]		
[100 psi]			
Weight	0.55 kg [1.21 lb]		
Hysteresis	3% maximum		
Threshold current	0 A (12 VDC coil)		
	0 A (24 VDC coil)		
Maximum control	1.8 A (12 VDC coil)		
current	0.9 A (24 VDC coil)		
Cavity	NCS06/3		
Standard Coil	M19P 22 Watt		

Theoretical performance

DIMENSIONS

mm [in]


Cross-sectional view

Schematic

1

2

(3)

P108 348E

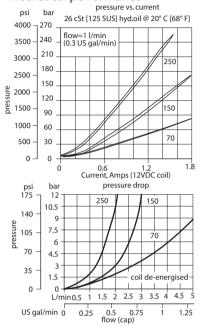
Setting range Seals Seals **ORDERING** 25 = 6-25 bar [90-360 psi] V = Viton 230000110 50 = 6-55 bar [90-800 psi] **INFORMATION** Omit = Buna-N 230000070 70 = 5-75 bar [90-1100 psi] Housing and ports **Housing P/N** 150 = 8-155 bar [120-2200 psi] 00 = No Housing No Housing 210 = 9-210 bar [130-3100 psi] SE6S = AL, #6 SAE NCS06/3-SE-6S Voltage NCS06/3-SE-8S SE8S = AL, #8 SAE 00 = No coilSE3/8 = AL, 3/8 BSP NCS06/3-SE-3/8 12D = 12VDC SE1/2 = AL, 1/2 BSP NCS06/3-SE-1/2 24D = 24VDC Termination **Manual override** 00 = No connector DN = DIN 43650 (ISO 4400) 00 = Push control (Standard) AJ = AMP JrDN1 = "DN" w/Connector P103 732E EN = Screw control DE = Deutsch

FL600 = Lead wires

Cartridge Valves Technical Information Proportional Valves Proportional Pressure Relieving XMD 04

Proportional valves

XMD 04


OPERATION

This is a direct-acting normally-open, proportional relief valve.

SPECIFICATIONS

Specifications	
Rated pressure	250 bar [3600 psi]
Rated flow	4 l/min [1 US gal/min]
Weight	0.44 kg [0.97 lb]
Hysteresis	3% maximum
Threshold current	0 A (12 VDC coil)
	0 A (24 VDC coil)
Maximum control	1.8 A (12 VDC coil)
current	0.9 A (24 VDC coil)
Cavity	NCS04/2
Standard Coil	M19P 22 Watt

Theoretical performance

Schematic ①

P103 668

DIMENSIONS

mm [in]

Cross-sectional view 26mm 3-5 Nm [26-44 lb^rin] KIT P/N 173802188 90.5 13.56l

P103 512

(2)

ORDERING INFORMATION

XMD 04 - 70 - 24D -DE - EN - 00 V V = Viton Seal kit Setting range 230000390 70 = 3-75 bar [44-1088 psi] Omit = Buna-N 230000190 150 = 4-160 bar [58-2321 psi] **Housing and ports Housing P/N** 250 = 7-250 bar [102-3626 psi] = No Housing No Housing 00 Voltage DG1/4 = AL.1/4 BSPNCS04/2-DG-1/4 00 = No coilDG4S = AL, #4 SAE NCS04/2-DG-4S 12D = 12VDC coilDG6S = AL, #6 SAE NCS04/2-DG-6S 24D = 24VDC coilOther housings available Termination Manual override 00 = No connector AJ = AMP Jr DE = Deutsch DN = DIN 43650 (ISO 4400) 00 = Push control (Standard) DN1 = "DN" w/Connector EN = Screw control FL600 = Lead wires P103 723E

Cartridge Valves Technical Information **Proportional Valves Proportional Pressure Relieving** CP558-20

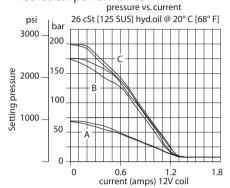
OPERATION

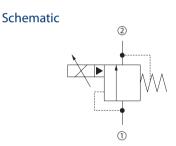
This valve is a direct acting, normally-open, proportional valve.

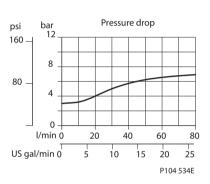
SPECIFICATIONS

SPECIFICATIONS	Specifications		The	oretical perform	ance
SIECHICATIONS	Rated pressure	210 har [2000 nci]	psi	bar 154 SUS (33 cS	t) hyd. oil @ 100° F (38° C)
	Rated flow	210 bar [3000 psi] 8 l/min [2 US gal/mi			min [0.3 gpm] flow
	Weight	0.48 kg [1.06 lb]	2611	180	
	Hysteresis	10% maximum			
	Threshold current	0 A (12 VDC coil)	2176	<u> </u>	300 = 200
	The short current	0 A (24 VDC coil)	1740		
	Maximum control	1.2 A (12 VDC coil)	1305		
	current	0.6 A (24 VDC coil)	870 8	60	
	Cavity	SDC08-2	435	30	Code = 100
	Standard Coil	D10 30 Watt		0	
	Coil nut	321978		0.2 0.4	0.6 0.8 1 1.2 1.4 Amps (with 12 VDC coil) ———
	Schematic		145 - 58 116 - 87 58 - 29 -	16 14 12 10 Coil de 8 6	c) hyd. oil @ 100° F (38° C) e-engergized 6 8 10 12 Flow 2.1 2.6 3.2 P102 418E
DIMENSIONS mm [in]	Cross-sectional v	1 iew	P102 432E 26mm		
3/4-16 UNF	0.875 27-34 N•n [20-25 lbf		3-5 Nm [26-44 lbf KIT P/N 1104155 includes nut and t	5	
2					
		87.0 [3.43]		► P10	02 398E
ORDERING		CDC	50 00 D 65 000 "		
INFORMATION		CPS	558 - 20 - <u>B</u> - <u>6S</u> - <u>300</u> - 2		— Termination
	Seals —				00 = No connector
	B = Bun		Seal kit	Voltage	H = DIN 43650
	V = Vitc		120222	000 = No coil	L = Lead wires
				12D = 12 VDC coil	DE = Deutsch M2 = Matripack 150
	Housing and		using P/N 🖳	24D = 24 VDC coil	M2 = Metripack 150 Type 1
			Housing		S = Spade
		1/4 RCD CDC0)8-2-DG-2B 🛛 🖳	Pressure code	
	DG2B = AL				
	DG3B = AL	, 3/8 BSP SDC0	08-2-DG-3B	050 = 35 bar	
	$\begin{array}{rcl} DG3B &= AL \\ 4S &= AL \end{array}$, 3/8 BSP SDC0 , #4 SAE CF	P08-2-4S	050 = 35 bar 100 = 69 bar	[1000 psi] max
	DG3B = AL $4S = AL$ $6S = AL$, 3/8 BSP SDC0 , #4 SAE CF , #6 SAE CF		050 = 35 bar 100 = 69 bar 200 = 138 bar	[1000 psi] max r [2000 psi] max
	$\begin{array}{rcl} DG3B &= AL \\ 4S &= AL \end{array}$, 3/8 BSP SDC0 , #4 SAE CF , #6 SAE CF	P08-2-4S	050 = 35 bar 100 = 69 bar 200 = 138 bar	[1000 psi] max

Cartridge Valves Technical Information Proportional Valves Proportional Pressure Relieving PRV10-POC

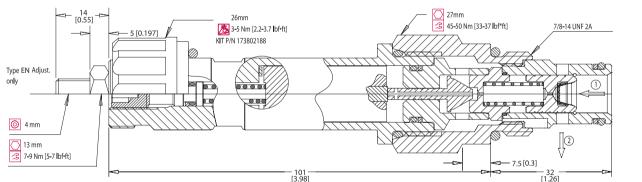

OPERATION


This is a normally-closed, pilot-operated, proportional relief valve.


SPECIFICATIONS

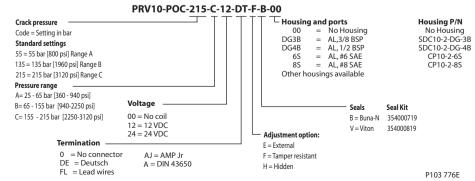
Specifications		
Rated pressure	250 bar [3600 psi]	
Rated flow	76 l/min [20 US gal/min]	
Weight	0.53 kg [1.17 lb]	
Hysteresis	10% maximum	
Threshold current	0 A (12 VDC coil)	
	0 A (24 VDC coil)	
Maximum control	1.4 A (12 VDC coil)	
current	0.7 A (24 VDC coil)	
Cavity	SDC10-2	
Standard Coil	M19P 22 Watt	

Theoretical performance



DIMENSIONS

mm [in]


Cross-sectional view

P102 942E

P103 756

ORDERING INFORMATION

Specifications

Cartridge Valves Technical Information **Proportional Valves Proportional Pressure Relieving** PRV12-POC

Theoretical performance

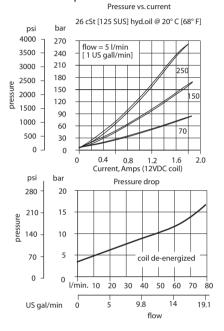
OPERATION

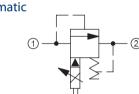
This is a normally-closed, pilot-operated, proportional relief valve.

SPECIFICATIONS

SPECIFICATIONS	Specifications		Theoretical performance	
	Rated pressure	250 bar [3600 psi]	pressure vs. current psi bar 26 cSt [125 SUS] hyd.oil @ 20° C [6	50° E1
	Rated flow	180 l/min [48 US gal/min]	bar 20 C3t [125 303] Hyd.on @ 20 C [1	
	Weight	0.62 kg [1.37 lb]	200 - C	++-
	Hysteresis	10% maximum	≝	++-
	Threshold current	0 A (12 VDC coil)	² / ₁₂₀₀₀ 150	++-
		0 A (24 VDC coil)		++-
	Maximum control	1.5 A (12 VDC coil)	<u>ن</u> ے اور	
	current	0.8 A (24 VDC coil)		
	Cavity	SDC12-2	50 + A	
	Standard Coil	M19P 22 Watt		
			0 _ 0 + + + + + + + + + + + + + + + + +	
			0 0.6 1.2 current (amps) 12V coil	1.8
			current (amps) 12v con	
			psi	
			Bar Pressure drop	
	Schematic		160 12	
		2		
			8	+
			80	+
	لكما		4	+
	Ì			
		•	l/min 0 50 100 150	200
			US gal/min	
DUALDANG		1	0 10 20 30 40	50
DIMENSIONS		P102 942E	P10	04 535E
mm [in]	Cross-sectional vi	iew		
Type E 11.2 adjustment [0.44]	26mm		2mm 3-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 24	
	26mm 	lbf*in]		
adjustment [0.44]	/ 🔏 3-5 Nm [26-44	lbf*in]		
adjustment [0.44] MAX	/ 🔏 3-5 Nm [26-44	lbf*in]		
adjustment [0.44] MAX		lbf*in] 2188		
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf*ft]		lbf'in] 2188		ſ
adjustment [0.44] MAX		lbf'in] 2188		ſ
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf*ft]	E 3-5 Nm [26-44 KIT P/N 173802	lbf*in] 2188		r
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lb ⁺ ft] 6 4 mm Type F and H	Coll NOT SHO	lbf"in] 2188 Compared to the second s	3-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 2A	ſ
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lb ⁺ ft] 6 4 mm	Coll NOT SHO	Ibf'in] 2188 DWN FOR CLARITY NG AS SHOWN	3-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 2A	L
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lb ⁺ ft] 6 4 mm Type F and H	Coll NOT SHO	Ibf'in] 2188 DWN FOR CLARITY NG AS SHOWN 100.0 100.0 100.0	3-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 2A 1-1/16-12 UN 2A 1 1 1 1 1 1 1 1 1 1 1 1 1	ſ
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lb ⁺ ft] 6 4 mm Type F and H	Coll NOT SHO	bb ^r in] 2188 DWN FOR CLARITY NG AS SHOWN 7.0 0 0 25	3-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 2A 1-1/16-12 UN 2A 1 1 1 1 1 1 1 1 1 1 1 1 1	T
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lb ⁺ ft] 6 4 mm Type F and H	Coll NOT SHO	Ibf'in] 2188 DWN FOR CLARITY NG AS SHOWN 100.0 100.0 100.0	3-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 2A 1-1/16-12 UN 2A 1 1 1 1 1 1 1 1 1 1 1 1 1	r P103 757
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lb ⁺ ft] 6 4 mm Type F and H	Coll NOT SHO	Ibf*in] Ibf*in] 2188 Ibf*in] OWN FOR CLARITY NG AS SHOWN 7.0 100.0 [0.26]	3-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 2A 1-1/16-12 UN 2A 1 1 1 1 1 1 1 1 1 1 1 1 1	r P103 757
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf*ft] 0 4 mm Type F and H adjustment	Crack pressure	Ibf'in] 2188 DWN FOR CLARITY NG AS SHOWN 100.0 100.0 100.0	3-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 2A 1-1/16-12 UN 2A 1 1 1 1 1 1 1 1 1 1 1 1 1	P/N
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure Code = Setting in bar	Ibf*in] Ibf*in] 2188 Ibf*in] OWN FOR CLARITY NG AS SHOWN 7.0 100.0 [0.26]	F-B 00 B-75 Mousing and ports 00 = No Housing Mousing	P/N sing
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure	Ibf*in] Ibf*in] 2188 Ibf*in] OWN FOR CLARITY NG AS SHOWN 7.0 100.0 [0.26]	F-B 00 Housing and ports 00 = No Housing DG4B = AL, 3/4 BSP DG6B = AL, 3/4 BSP SDC12-2-1 Contraction DG6B = AL, 3/4 BSP	P/N sing DG-4B DG-6B
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure Code = Setting in bar Standard settings S5 = 55 bar (800 psi) Range A 135 = 135 bar (1960 psi) Range B	bb ^r in] 2188 OWN FOR CLARITY NG AS SHOWN 100.0 [3.94] PR V12-POC-215-C-12-DT-	F-B 00 Housing and ports 0 = No Housing 0 = AL,1/2 BSP DG6B = AL,3/4 BSP DG6B = AL,3/4 BSP SDC12-2-1 105 = AL,#10 SAE SDC12-2-1 125 = AL,#10 SAE SDC12-2-1 125 = AL,#12 SAE SDC12-2-1 SD	P/N sing DG-4B DG-6B -10S
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure Coll. NOT SHO INSTALL O-RIN Code = Setting in bar Standard settings S5 = 55 bar [800 psi] Range A 135 = 135 bar (1960 psi] Range B 215 = 215 bar [3120 psi] Range C	bb ^r in] 2188 OWN FOR CLARITY NG AS SHOWN 100.0 [3.94] PR V12-POC-215-C-12-DT-	F-B 00 Housing and ports 00 = No Housing DG4B = AL, 3/4 BSP DG6B = AL, 3/4 BSP SDC12-21 DG6B = AL, 3/4 BSP SDC12-25 DG6B = AL, 3/4 BSP SDC12-26 DS = AL, 3/4 BSP SDC12-26 SDC1	P/N sing DG-4B DG-6B -10S
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure Code = Setting in bar Standard settings S5 = 55 bar [800 psi] Range A 135 = 135 bar [1960 psi] Range B 215 = 215 bar [310 psi] Range C Pressure range A = 25 - 65 bar [360 - 940 psi]	bb ^r in] 2188 OWN FOR CLARITY NG AS SHOWN 100.0 [3.94] PR V12-POC-215-C-12-DT-	F-B 00 Housing and ports 0 = No Housing 0 = AL,1/2 BSP DG6B = AL,3/4 BSP DG6B = AL,3/4 BSP SDC12-2-1 105 = AL,#10 SAE SDC12-2-1 125 = AL,#10 SAE SDC12-2-1 125 = AL,#12 SAE SDC12-2-1	P/N sing DG-4B DG-6B -10S
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure Code = Setting in bar Standard settings 55 = 55 bar (800 psi) Range A 135 = 135 bar (1960 psi) Range B 215 = 215 bar (3120 psi) Range G Pressure range A = 25 - 65 bar (300 - 940 psi) B = 65 - 155 bar (340 - 940 psi) B = 65 - 155 bar (340 - 940 psi)	bb ^r in] 2188 0WN FOR CLARITY NG AS SHOWN 7.0 100.0 [3.94] PR V12-POC-215-C-12-DT- 00 = No coil	B-75 Nm [50-55 lbf*ft] 1-1/16-12 UN 2A Image: Constraint of the second secon	P/N sing DG-4B DG-6B -10S
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure Code = Setting in bar Standard settings S5 = 55 bar [800 psi] Range A 135 = 135 bar [1960 psi] Range B 215 = 215 bar [310 psi] Range C Pressure range A = 25 - 65 bar [360 - 940 psi]	bb ^r in] 2188 0WN FOR CLARITY NG AS SHOWN 7.0 100.0 [3.94] PR V12-POC-215-C-12-DT- 00 = No coil	F-B 00 B0 = No Housing No Housing DG4B = AL, 1/2 BSP SDC12-24 DG6B = AL, 3/4 BSP SDC12-24 DG7 S	P/N sing DG-4B DG-6B -10S
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Coll. NOT SHO INSTALL O-RIN Coll. NOT SHO INSTALL O-RIN Coll. NOT SHO INSTALL O-RIN Standard settings S5 = 55 bar [800 psi] Range A 135 = 135 bar [1960 psi] Range B 215 = 215 bar [3120 psi] Range O Pressure range A = 25 - 65 bar [360 - 940 psi] B = 65 - 155 bar [2250-3120 psi] C = 155 - 215 bar [2250-3120 psi] C = 155 - 215 bar [2250-3120 psi]	bt ^r in] 2188 2188 DWN FOR CLARITY NG AS SHOWN 7.0 100.0 [3.94] PR V12-POC-215-C-12-DT- [3.94] Voltage 00 = No coil 12 = 12 VDC 24 = 24 VDC	B-75 Nm [50-55 lbf*f] 1-1/16-12 UN 2A Image: Second Sec	P/N sing DG-4B DG-6B -10S
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure Code = Setting in bar Standard settings S5 = 55 bar [800 psi] Range A 135 = 135 bar [1960 psi] Range G Pressure range A = 25 - 65 bar [360 - 940 psi] B = 65 - 155 bar [3120 psi] Range C Pressure range A = 25 - 65 bar [360 - 940 psi] B = 65 - 155 bar [2250-3120 psi] C = 155 - 215 bar [2250-3120 psi] C = 100 control D = Deutsch	Ibf*in] Image: Constraint of the second	3-75 Nm [50-55 lbf*f] 1-1/16-12 UN 2A Image: state of the state of t	P/N sing DG-4B DG-6B -10S
adjustment [0.44] MAX 13 mm 3 7-9 Nm [5-6 lbf"ft] 10 4 mm Type F and H adjustment ORDERING	Crack pressure Coll. NOT SHO Coll. NOT SHO INSTALL O-RIN Code = Setting in bar Standard settings S5 = 55 bar (800 psi) Range A 135 = 135 bar (1960 psi) Range B 215 = 215 bar (1920 psi) Range C Pressure range A = 25 - 65 bar (360 - 940 psi) B = 65 - 155 bar (2520 - 3120 psi) C = 155 - 215 bar (2250 - 3120 psi) C = 150 conner 0	Ibřín] Imředou 1000 2188 Imředou 1000 OWN FOR CLARITY NG AS SHOWN 7.0 100.0 [0.28] 100.0 [0.28] 100.0 [0.28] 00 = No coil 12 = 12 VDC 00 = No coil 12 = 12 VDC 24 = 24 VDC 24 = 24 VDC 00 = So AJ = AMP Jr	B-75 Nm [50-55 lbf*f] 1-1/16-12 UN 2A Image: state of the state of t	P/N sing DG-4B DG-6B -10S

Cartridge Valves Technical Information Proportional Valves Proportional Pressure Relieving XMP 06

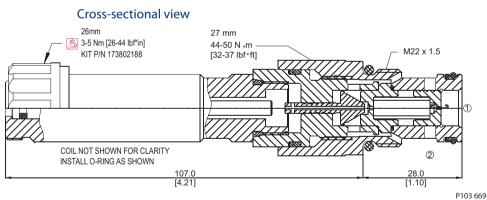

OPERATION


This is a pilot-operated, normally-open, proportional relief valve.

SPECIFICATIONS

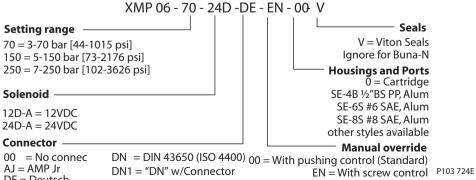
Specifications		
Rated pressure	315 bar [4500 psi]	
Rated flow	50 l/min [13 US gal/min]	
Weight	0.53 kg [1.17 lb]	
Hysteresis	3% maximum	
Threshold current	0 A (12 VDC coil)	
	0 A (24 VDC coil)	
Maximum control	1.8 A (12 VDC coil)	
current	0.9 A (24 VDC coil)	
Cavity	NCS06/2	
Standard Coil	M19P 22 Watt	

Theoretical performance



P103 697E

Schematic


DIMENSIONS

mm [in]

P103 512

ORDERING **INFORMATION**

DE = Deutsch

Cartridge Valves Technical Information Proportional Valves Notes

