

Cartridge Valves Technical Information Counterbalance valves Quick reference

Hydraulic Vent	Model No.	Cavity	Description	Flow*	Pressure	Page
_	CP448-1	CP08-3L	Counterbalance Valve,	20 l/min	350 bar	09.6
			Hydraulic Vent	[5 US gal/min]	[5000 psi]	
	CB10-HV	SDC10-3S		60 l/min	350 bar	09.7
				[16 US gal/min]	[5000 psi]	
	CP441-1	CP12-3S		115 l/min	350 bar	09.8
				[30 US gal/min]	[5000 psi]	
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	CP443-1	CP20-3S		190 l/min	350 bar	09.9
				[50 US gal/min]	[5000 psi]	

Atmospheric Vent	Model No.	Cavity	Description	Flow*	Pressure	Page
0	CB10-AV	SDC10-3S	Counterbalance Valve,	60 l/min	350 bar	09.10
			Atmospheric Vent	[16 US gal/min]	[5000 psi]	
3						

Atmospheric Vent	Model No.	Cavity	Description	Flow*	Pressure	Page
3	VCB 12-CN	NCS12/3	Counterbalance Valve,	140 l/min	350 bar	09.11
			Atmospheric Vent	[37 US gal/min]	[5000 psi]	

^{*} Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

Cartridge Valves Technical Information Counterbalance valves Quick reference

Dual Counterbalance	Model No.	Cavity	Description	Flow*	Pressure	Page
C1 T C2	1EEC11-1	None	Dual-Counterbalance	57 l/min	345 bar	09.12
			Valve, with Makeup Checks,	[15 US gal/min]	[5000 psi]	
			Catalog HIC			
				1		
$\frac{1}{A} = \frac{1}{B} + \frac{1}$						
V1 V2						

Model No.	Cavity	Description	Flow*	Pressure	Page
CP448-2	None	Counterbalance Valve,	20 l/min	350 bar	09.13
		Hydraulic Vent,	[5 US gal/min]	[5000 psi]	
DCB10-HV	None	Catalog HIC	60 l/min	350 bar	09.14
			[16 US gal/min]	[5075 psi]	
CP441-2	None		115 l/min	350 bar	09.15
			[30 US gal/min]	[5000 psi]	

	Model No.	Cavity	Description	Flow*	Pressure	Page
	DCB10-AV	None	Counterbalance Valve,	60 l/min	350 bar	09.16
			Atmospheric Vent,	[16 US gal/min]	[5075 psi]	
\supset			Catalog HIC			

^{*} Flow ratings are based on a pressure drop of 7 bar [100 psi] unless otherwise noted. They are for comparison purposes only.

Cartridge Valves Technical Information Counterbalance valves Application notes

MOTION CONTROL VALVES

Motion control valves, also referred to as load holding valves, are used to control the motion of a load in the following ways:

- Prevent a load from dropping in case of hose or tube failure.
- Prevent a load from drifting caused by directional control valve spool leakage.
- Provide smooth, modulated motion when the load is in a lowering or run-away mode.
- Provide smooth, modulated motion when the directional control valve is suddenly closed.

There are two basic types of motion control valves:

- Pilot-operated, or pilot-to-open check valves will satisfy the first two of the above requirements.
- Counterbalance valves will satisfy all four of the above requirements.

Counterbalance valves

COUNTERBALANCE VALVES

A counterbalance valve provides several functions:

- Free flow in one direction.
- · Leak-free load holding.
- Protection against hydraulic line failure.
- Protection against pressure shocks caused by external forces or overrunning loads
- Cavitation-free motion control to match speed to pump flow when a load could cause loss of control of an actuator (cylinder or motor).
- Smooth, modulated motion control when the directional valve is suddenly closed.

Cartridge Valves Technical Information Counterbalance valves Application notes

COUNTERBALANCE VALVES (continued)

Counterbalance valves will positively hold a pressurized load and will control the motion of the load based on application of a pressure signal to the pilot port. Counterbalance valves are available as individual cartridges or standard cartridge-in-body (CIB) packages.

A typical circuit application for a counterbalance valve contains a pump, directional control valve, and an actuator. Without a counterbalance valve the load will drift down due to spool leakage if the directional control valve is centered with the load raised. Additionally there is no protection against the load dropping in the event of hydraulic line failure. Individual cartridge counterbalance valve

Circuit without a counterbalance valve

Circuit with a counterbalance valve

Adding a counterbalance valve controls motion and provides protection against hose or tube failure. In this circuit, moving the directional control valve to the left causes the cylinder to extend, raising the load with free flow going through the check valve portion of the counterbalance valve. When the directional control valve is centered, the counterbalance valve will prevent leakage and lock the load in position. Moving the directional control valve to the right sends flow/pressure to the rod end of the cylinder. This pressure also acts to pilot open the counterbalance valve and allows the load to be lowered. Should the load cause the cylinder to run away from the pump, pilot pressure to the counterbalance valve will decrease and the counterbalance valve will modulate to match the cylinder speed to the pump flow.

P103 122

P103 121

Cartridge Valves Technical Information Counterbalance valves Application notes

COUNTERBALANCE
VALVES
(continued)

The pressure required to pilot open the counterbalance valve can be calculated as follows:

- $P = \frac{(Ps \cdot Ab) W}{(Ab \cdot R) + Ar} (load retracts cylinder)$
- $P = \frac{(Ps \cdot Ar) W}{(Ar \cdot R) + Ab}$ (load extends cylinder)

W = Load

- Ps = Counterbalance valve relief setting; see below for more information
- Ab = Cylinder bore area
- Ar = Cylinder rod area
- R = Counterbalance valve pilot ratio; see below for more information

Note that these equations are idealized and do not consider any backpressure in the circuit, which is additive to the pressure required to pilot open the check valve.

Some additional guidelines for counterbalance valve applications:

- Specify the counterbalance valve relief setting high enough to stop any motion (flow) at the maximum expected actuator pressure. Generally it is recommended to use a setting of 1.3 multiplied by the maximum load pressure.
- Use low pilot ratios (3:1 and 4.5:1) for applications where loads may vary widely. Low
 pilot ratios require higher pilot pressure and are less efficient but provide stable,
 precise control for varying loads.
- Use high pilot ratios (8:1 and 10:1) for applications where loads are relatively constant. High pilot ratio valves require lower pilot pressure, have faster response, and are more efficient, but lack stability and precision in response to varying loads.
- Do not oversize counterbalance valves. There is no pressure drop operating limit for counterbalance valves and in fact some pressure drop is required to maintain valve operation.
- Locate counterbalance valves at or near the actuator to provide maximum load holding protection in the event of hydraulic line failure.
- Do not use counterbalance valves with closed-center directional control valves.
 Pressure trapped between the directional control valve and the actuator can pilot the counterbalance valve open and result in undesired load motion.
- Do not use counterbalance valves with tandem-center directional control valves. Backpressure in the system can prevent the counterbalance valve from opening.

520L0588 • Rev DB • November 2010

Cartridge Valves Technical Information Counterbalance valves Hydraulic Vent CP448-1

OPERATION

This is a pilot-operated counterbalance valve.

SPECIFICATIONS

Theoretical performance psi bar 154 SUS (33 cSt) hyd. oil @ 100° F (38° C) psi 435 30

Specifications

Rated pressure	350 bar [5000 psi]
Rated flow at 22	20 l/min [5 US gal/min]
bar [319 psi]	
Leakage	10 drops/min @ 70% of
	crack pressure
Weight	0.16 kg [0.36 lb]
Pilot ratio	3:1,4.5:1,8:1
Cavity	CP08-3L

DIMENSIONS

mm [in]

Seals B = Buna-N V = Viton Housing and ports 0 = No Housing	CP448 - 1 - B - <u>6S</u> - E - Seal kit 120238 120239 Housing P/N No Housing	- <u>B</u> - 1 <u>50</u> - <u>4.5</u> - <u>04</u>	0 	Free flow check crack pressure bar [psi] 040 = 2.76 [40]
$\begin{array}{rcl} 2B &=& AL, 1/4 BSP \\ 3B &=& AL, 3/8 BSP \\ 4S &=& AL, #4 SAE \\ 6S &=& AL, #6 SAE \\ Other housings available \end{array}$	CP08-3L-2B CP08-3L-3B CP08-3L-4S CP08-3L-4S CP08-3L-6S	Pressure ran	ge Crack	oressure Code x 10 = psi Example: 150 = 1500 psi XXX = Std. setting w/no stamping
Adjustment option — E = External	Pilot ratio bar A = 41-10 Std. setting 69 B = 69-20 Std. setting 103 C = 124-3	o 3.0 [psi] 3 [600-1500] [1000] Si 7 [1000-3000] [1500] Si 45 [1800-5000]	Pilot ratio 4.5 bar [psi] A = $55-172$ [800-250] td. setting 103 [1500] B = 103-345 [1500-50] td. setting 172 [2500]	Pilot ratio 8.0 bar [psi] 0] A = 103-345 [1500-5000] Std. setting 172 [2500] 00]
	Std. setting 172	[2500]		P102 102E

Cartridge Valves Technical Information Counterbalance valves Hydraulic Vent CB10-HV

OPERATION

This is a pilot-operated counterbalance valve.

Schematic

SPECIFICATIONS

Specifications

Rated pressure	350 bar [5000 psi]
Rated flow at 22	60 l/min [16 US gal/min]
bar [319 psi]	
Leakage	10 drops/min @ 70% of
	crack pressure
Weight	0.22 kg [0.47 lb]
Pilot ratio	1.5:1, 3:1, 4.5:1, 10:1
Cavity	SDC10-3S

DIMENSIONS

mm [in]

Cross-sectional view

CE	310-HV- <u>1</u> - <u>А</u> -1-Е-	<u>7</u> 0-B-XXXX	Body and ports _ 00 = Cartridge only	Body No No Body	menclature
Spring Range			6S = Aluminium, #6 SAE	SDC10-35	5-6S
For Pilot Ratio Z (1.5:1)			8S = Aluminium, #8 SAE	SDC10-35	5-8S
1 = 20-70 bar [290-1015 psi]			SE3B = Aluminium, 3/8" BSPI	P SDC10-35	S-SE3B
2 = 30-90 bar [435-1305 psi]			SE4B = Aluminium, 1/2" BSPI	P SDC10-35	S-SE4B
3 = 50-140 bar [725-2030 psi]	Pilot Ratio			Seals	Seal kit
For Pilot Ratio A (3:1)	Z = 1.5 to 1			B = Buna-N	230001020
1 = 35-110 bar [507-1595 psi]	A = 3 to 1	Std. setting		V = Viton	35401519
2 = 60-150 bar [870-2175 psi]	B = 4.5 to 1	45 = 45 bar [650 psi]	Set in Spring 1 For Pilot Ratio	Z	
3 = 80-230 bar [1160-3335 psi]	C = 10 to 1	60 = 60 bar [870 psi]	Set in Spring 2 For Pilot Ratio	Z	
For Pilot Ratio B (4.5:1)		70 = 70 bar [1015 ps	i] Set in Spring 1 For Pilot Ratio	A	
1 = 55-180 bar [797-2610 psi]		100 = 100 bar [1450 ps	i] Set in Spring 3 For Pilot Ratio	ΣC	
2 = 75-240 bar [1087-3480 psi]		100 = 100 bar [1450 ps	i] Set in Spring 1 For Pilot Ratio	о B	
3 = 90-350 bar [1305- 5075 psi]	Adjustment type	100 = 100 bar [1450 ps	i] Set in Spring 2 For Pilot Ratio	э A,B	102 2245
For Pilot Ratio C (10:1)	E = external adjustment	175 = 175 bar [2537 ps	i] Set in Spring 3 For Pilot Rati	o A,B P	103 324E
1 = 90-350 bar [1305-5075 psi]	F = tamper resistant	175 = 175 bar [2537 ps	si] Set in Spring 1 For Pilot Rati	οC	

Cartridge Valves Technical Information Counterbalance valves Hydraulic Vent CP441-1

Cartridge Valves Technical Information Counterbalance valves Hydraulic Vent CP443-1

Cracking pressure Code x 10 = psiExample: 100 = 1000 psiXXX = Std. setting w/no stamping

Droccuro range

Adjustment option	Pi	ressure range	
E = External	Pilot ratio 3.0	Pilot ratio 4.5	Pilot ratio 10.0
	bar [psi]	bar [psi]	bar [psi]
	A = 34-103 [500-1500]	A = 34-138 [500-2000]	A = 69-345 [1000-5000]
	Std setting 69 [1000]	Std setting 103 [1500]	Std setting 172 [2500]
	B = 103-207 [1500-3000]	B = 103-345 [1500-5000]	P103 257
	Std setting 172 [2500]	Std setting 207 [3000]	

CP20-3S-10B/2B

CP20-3S-16S/4S

CP20-3S-20S/4S

= AL, 1-1/4 BSP

= AL, #16 SAE

= AL, #20 SAE

Other housings available

10B

16S

20S

Cartridge Valves Technical Information Counterbalance valves Atmospheric Vent CB10-AV

OPERATION

This is a pilot-operated counterbalance valve with an atmospheric vent.

Schematic

SPECIFICATIONS

Theoretical performance

P103 325

Specifications

Rated pressure	350 bar [5000 psi]
Rated flow at 22	60 l/min [16 US gal/min]
bar [319 psi]	
Leakage	10 drops/min @ 70% of
	crack pressure
Weight	0.27 kg [0.60 lb]
Pilot ratio	1.5:1, 3:1, 4.5:1, 10:1
Cavity	SDC10-3S

DIMENSIONS

mm [in]

Cross-sectional view

CE	310-AV- <u>1</u> - <u>A</u> -1-Ę	-70-₽-X <u>XXX</u>	Body and ports _ 00 = Cartridge only	Body No No Body	omenclature
Spring Range			6S = Aluminium, #6 SAE	SDC10-3	3S-6S
For Pilot Ratio Z (1.5:1)			8S = Aluminium, #8 SAE	SDC10-3	3S-8S
1 = 20-70 bar [290-1015 psi]			SE3B = Aluminium, 3/8" BSP	P SDC10-3	S-SE3B
2 = 30-90 bar [435-1305 psi]			SE4B = Aluminium, 1/2" BSP	P SDC10-3	3S-SE4B
3 = 50-140 bar [725-2030 psi]	Pilot Ratio			Seals	Seal kit
For Pilot Ratio A (3:1)	Z = 1.5 to 1			B = Buna-N	230001020
1 = 35-110 bar [507-1595 psi]	A = 3 to 1	Std. setting		V = Viton	35401519
2 = 60-150 bar [870-2175 psi]	B = 4.5 to 1	45 = 45 bar [650 psi]	Set in Spring 1 For Pilot Ratio	Z	
3 = 80-230 bar [1160-3335 psi]	C = 10 to 1	60 = 60 bar [870 psi]	Set in Spring 2 For Pilot Ratio	Z	
For Pilot Ratio B (4.5:1)		70 = 70 bar [1015 ps	i] Set in Spring 1 For Pilot Ratio	A	
1 = 55-180 bar [797-2610 psi]		100 = 100 bar [1450 ps	i] Set in Spring 3 For Pilot Rati	σZ	
2 = 75-240 bar [1087-3480 psi]		100 = 100 bar [1450 ps	i] Set in Spring 1 For Pilot Rati	οВ	
3 = 90-350 bar [1305- 5075 psi]	Adjustment type	100 = 100 bar [1450 ps	si] Set in Spring 2 For Pilot Rati	o A,B	D102 2275
For Pilot Ratio C (10:1)	E = external adjustment	175 = 175 bar [2537 ps	si] Set in Spring 3 For Pilot Rat	o A,B	P103 32/E
1 = 90-350 bar [1305-5075 psi]	F = tamper resistant	175 = 175 bar [2537 ps	si] Set in Spring 1 For Pilot Rat	o C	

Cartridge Valves Technical Information Counterbalance valves **Atmospheric Vent VCB 12-CN**

OPERATION

This is a pilot-operated counterbalance valve with an atmospheric vent.

Schematic

Specifications

Rated pressure	350 bar [5000 psi]
Rated flow at 22	140 l/min [37 US gal/min]
bar [319 psi]	
Weight	0.93 kg [2.05 lb]
Pilot ratio	4.7:1, 5.9:1, 6.9:1
Cavity	NCS12/3

DIMENSIONS

mm [in]

Cross-sectional view

ORDERING INFORMATION

To order this valve with a specific factory setting, contact your Sauer-Danfoss representative

P103 859

VCB 12-CN

Cartridge Valves Technical Information Counterbalance valves **Dual Counterbalance** 1EEC11

OPERATION

This valve is a dual counterbalance valve with make up checks.

SPECIFICATIONS

Specifications

Rated pressure	345 bar [5000 psi]
Rated flow at 7 bar	57 l/min [15 US gal/min]
[100 psi]	
Weight	2.04 kg [4.50 lb]
Pilot ratio	3:1, 4.5:1, or 10:1
Cavity	none

DIMENSIONS

mm [in]

Cartridge Valves Technical Information Counterbalance valves **Dual Counterbalance** CP448-2

OPERATION

This valve is a dual counterbalance valve. It uses two CP448-1 cartridges.

SPECIFICATIONS

Theoretical performance bar 154 SUS (33 cSt) hyd. oil @ 100° F (38° C) psi . 435 30 piloted open 1→2

Specifications

Rated pressure	350 bar [5000 psi]
Rated flow at 22	20 l/min [5 US gal/min]
bar [319 psi]	
Weight	0.78 kg [1.72 lb]
Pilot ratio	3:1, 4.5:1, 8:1
Cavity	none

DIMENSIONS

mm [in]

P102 749

ORDERING **INFORMATION**

CP448-2-4S-B-0-E-B-150-4.5-040 **Check crack pressure** 040 = 2.8 bar [40 psi] Pilot ratio --1.5-- 3.0--4.5--8.0 **Crack pressure** 41-124 bar 55-186 bar 103-345 bar 14-55 bar A Code x 10 = psi [200-300 psi] [600-1800 psi] [800-2700 psi] [1500-5000 psi] Pressure B Example: 050 = 500 psi103-345 bar 34-117 bar 69-241 bar range [500-1700 psi] [1000-3500 psi] [1500-5000 psi] 55-207 bar 124-345 bar Adjustment option С [800-3000 psi] [1800-5000 psi] E = ExternalSeals Seal kits B = Buna N120238 **Housing and ports** V = Viton120239 4S = AL, #4 SAE 6S = AL, #6 SAEother housings available, consult factory P102 750E

520L0588 • Rev DB • November 2010

Counterbalance valves

CP448-2

Cartridge Valves Technical Information Counterbalance valves Dual Counterbalance DCB10-HV

OPERATION

SPECIFICATIONS

This is a dual counterbalance valve with hydraulic vent. This assembly uses 2 CB10-HV cartridges.

26 cSt [121 SUS] hyd.oil at 50°C [122°F]

Pilot oper

12

P104883

15 US gal/min

Theoretical performance

20 30 40 50

psi bar

³⁰⁰ - 20 200 15

25

100

Specifications

specifications		
Rated pressure	350 bar [5075 psi]*	
Rated flow at 22	60 l/min [16 US gal/min]	
bar [319 psi]		
Leakage	10 drops/min @ at 70% of	
	crack pressure	
Weight	0.90 kg [1.98 lb]	
Pilot ratio	1.5:1, 3.0:1, 4.5:1, 10.0:1	
Cavity	None	

P102 379E

* 350 bar with steel housing

210 bar with aluminum housing

Cross-sectional view

SAE - Ported

Spring range DCB10	<u>)-HV-1</u> -₽-1- <u></u> - <u>100</u>	Body and ports Body P/N 65 = Aluminium, #6 SAE 11002669 66 = Aluminium, #6 CAE 11002720
For plot ratio Z (1.5:1) 1 = 20-70 bar [290-1015 psi] 2 = 30-90 bar [435-1305 psi] 3 = 50-140 bar [725-2030 psi] For pilot ratio A (3:1) 1 = 35-110 bar [507-1595 psi]	Pilot ratio Z = 1.5 to 1 A = 3 to 1 B = 4.5 to 1	SS = Aluminium, 3/8" BSPP 922518510 SE3B = Aluminium, 3/8" BSPP 922518610 SE4B = Aluminium, 1/2" BSPP 922518610 S6S = Steel, #6 SAE 11009171 S6S = Steel, #8 SAE 11009170 Seals Seal kit
2 = 60-150 bar [870-2175 psi] 3 = 80-230 bar [160-3335 psi] For pilot ratio B (4.5:1) 1 = 55-180 bar [797-2610 psi] 2 = 75-240 bar [1087-3480 psi] 2 = 00-260 bar [1087-3480 psi]	C = 10 to 1 Check crack pressure 1 = 1 bar (14.5 psi)	B = Buna-N 11002672 V = Viton 11002673 Std. setting 45 = 45 bar 60 = 60 bar [870 psi] Set in Spring 1 For Pilot Ratio Z 70 = 70 bar [1015 psi] Set in Spring 1 For Pilot Ratio A
3 = 90-350 bar [1305-5075 psi] For pilot ratio C (10:1) 1 = 90-350 bar [1305-5075 psi]	Adjust type E = External adjustment F = Tamper resistant	100 = 100 bar [1450 psi] Set in Spring 3 For Pilot Ratio Z 100 = 100 bar [1450 psi] Set in Spring 1 For Pilot Ratio B 100 = 100 bar [1450 psi] Set in Spring 2 For Pilot Ratio A,B 175 = 175 bar [2537 psi] Set in Spring 3 For Pilot Ratio C

Cartridge Valves Technical Information Counterbalance valves **Dual Counterbalance** CP441-2

OPERATION

This valve is a dual counterbalance valve. It uses two CP441-1 cartridges.

Schematic

Specifications

Rated pressure	350 bar [5000 psi]
Rated flow at 7 bar	115 l/min [30 US gal/min]
[100 psi]	
Weight	1.26 kg [2.77 lb]
Pilot ratio	3:1, 4.5:1, 10:1
Cavity	none

DIMENSIONS

mm [in]

Counterbalance valves

CP441-2

Cartridge Valves Technical Information Counterbalance valves **Dual Counterbalance** DCB10-AV

(C1) (2) ATM. - - 🕅 XA - ATN (V1) (V2) P104 885

OPERATION

SPECIFICATIONS

This is a dual counterbalance valve with atmospheric vent. This assembly uses the CB10-AV valve.

26 cSt [121 SUS] hvd.oil at 50°C [122°F]

Pilot oper

12

P104883

5

15 US gal/min

Theoretical performance

20 30 40 50 60 l/min

10

psi bar

25

10 100 5

Specifications

- 1	
Rated pressure	350 bar [5075 psi]*
Rated flow at 22	60 l/min [16 US gal/min]
bar [319 psi]	
Leakage	10 drops/min @ at 70% of
	crack pressure
Weight	0.90 kg [1.98 lb]
Pilot ratio	1.5:1, 3.0:1, 4.5:1, 10.0:1
Cavity	None

÷.

31.8 [1.25]

* 350 bar with steel housing

210 bar with aluminum housing

Cross-sectional view

15.9

BSP Ported - (Body Only)

175 = 175 bar [2537 psi] Set in Spring 1 For Pilot Ratio C